kimchi & kraut

Passive House + Net Zero Energy + Permaculture Yard

Tag Archives: service core

Completing our Wall Assembly: Rockwool Batts, Intello, and Drywall

0

Insulation for Exterior Walls

Once Wojtek and Mark were done installing our continuous insulation on the exterior side of our Zip sheathing (4″ of Rockwool Comfortboard 80), including the first layer of battens (no more errant fasteners through the Zip to worry about), I was able to move inside and begin installing Rockwool Batts (R-23) in our 2×6 wall framing.

Once we had moved on from our first builder, and after reading up on the available options for insulation, we decided to invest in Rockwool insulation, both the rigid Comfortboard 80 on the exterior of our sheathing and the Rockwool batts for inside our stud bays. Although more expensive, particularly the Comfortboard 80 for continuous insulation (used rigid foam would’ve been substantially less expensive), we felt that many of its properties made it worth the added cost.

 

 

In particular, by helping our wall assembly to be vapor-permeable (or vapor open), we felt the Rockwool could help mitigate any mistakes, should they be made, in the wall assembly details. This being our first build acting as a GC, we wanted to add some margin for error wherever we could find it.

More details on our wall assembly and how we finalized details, including our desire to maintain a high level of IAQ, can be found here: Wall Assembly

For environmental reasons, one of our goals was to try and be as “foam free” as possible throughout the build. In addition, beyond just this issue regarding the use of foam (in all its forms: rigid board and sprayed varieties alike), there’s increasing awareness about the carbon footprint of our structures, not to mention the total carbon footprint of our daily lives.

At any rate, if I had it to do over, I would at least seriously consider using reclaimed rigid foam for our continuous insulation over the sheathing (both for the potential cost savings and its status as a reclaimed material otherwise headed for a landfill), understanding that it does reduce a wall’s ability to dry to the exterior. As others have noted, using reclaimed rigid foam in this way may be the best, or “greenest”, use of foam insulation until the construction industry hopefully moves beyond its use altogether as better options become more viable (e.g. wood fiber insulation).

Here are some resources for reclaimed rigid foam:

http://insulationdepot.com/

https://www.reuseaction.com/sales/foam/

https://www.greeninsulationgroup.com/

https://www.repurposedmaterialsinc.com/polyiso-insulation/

I would also consider using dense pack cellulose in the 2×6 walls instead of the Rockwool batts if I could find an installer I was reasonably certain could do the work properly. During construction it felt safer to use my own labor to install the Rockwool batts, thus avoiding the possibility of any gaps in the wall insulation. I was hoping to offset the cost of the batts with my free labor, plus I just enjoyed doing the work. Had we gone with the dense pack cellulose, it would’ve been something I couldn’t do on my own (no equipment or training).

 

lights on in base 4 rockwool

Basement ready for Rockwool batt insulation.

 

Installing the Rockwool batts is fairly easy and satisfying work. They’re much easier to work with than fiberglass batts, which are horrible on your skin and tend to flop around as you try to get them into place. While the Rockwool also produces some irritating fibers when it’s cut (and requires a dust mask like fiberglass), I found that a shower easily washed them away. Wearing long sleeves during installation also easily mitigates this issue.

 

base knee wall w: rockwool going in

Insulating the exterior wall in what will be the basement stairwell.

 

Also, the fact that the Rockwool batts have a friction fit means they don’t require any additional staples or netting to get them to stay put once installed.

 

 

Because of the friction fit, it’s also easy to tear off small pieces to stuff into irregular shaped voids should the need arise.

 

rim joist w: and w:out rockwool

Basement rim joist without and with Rockwool batt insulation.

 

Like the Comfortboard 80, the batts can have some variation from one piece to another, with a change in the amount of density clearly visible. With the Comfortboard 80, this was significant enough that we avoided using the worst pieces, meaning those with the least amount of density (these pieces felt thinner and sometimes even crumbly). Although this inconsistency was still present in the batts, I managed to use almost every piece, saving the least dense pieces for use in some interior walls for sound attenuation (more on this topic below).

 

base kneel wall corner rockwool

Corner of basement with knee wall and rim joists insulated with Rockwool batts.

 

Overall, we were happy with the Rockwool batts, and would definitely use them again should dense pack cellulose not be a viable option. They’re also ideal for a self-build since anyone who’s reasonably handy can install them should they have the time available during construction.

 

rockwool around base beam

Rockwool batts packed into gaps around the basement steel beam.

 

In conjunction with the Intello that would eventually be installed over the 2×6 framing members and the Rockwool batts, we also used Flame Tech putty pads to air seal behind every outlet and light switch box. I had seen them used in a Matt Risinger video for sound attenuation:

 

 

The other option would’ve been to use airtight junction boxes. Here are a couple of examples: Small Planet Supply and 475HPBS.

In order to limit issues with all the air sealing I was doing, I tried to stick with products my subcontractors already used everyday. As a result, since my electrician wasn’t familiar with airtight junction boxes, I opted instead to come in after he had everything installed and apply the putty pads. I found installing them to be straightforward and pretty quick.

 

box label putty pads

 

The putty pads are attached to release paper. Once the paper was removed the pads were easy to mold around each outlet and light switch box.

 

label putty pad

Acoustical putty pads purchased on Amazon.

 

Here’s a completed outlet box:

 

putty pad on outlet

Putty pad molded around every outlet and light switch.

 

The trickiest area to detail for the walls was at the ceiling and wall junction. In our case, the roof trusses sit on 2-2×6’s turned on their sides, which sit on top of the wall’s double top plate. The 2-2×6’s create space for our service cavity under the bottom chord of the roof trusses.

 

extoseal-encors-as-gasket

2-2×6’s on edge, sitting on double top plates. Extoseal Encors acting as gasket once taped from the exterior face of the Zip sheathing over the top of the 2-2×6’s, thus completing an air sealed connection between the exterior (Zip sheathing) and the interior before roof trusses are set in place. More details here: Roof Details

 

Before cellulose could be blown into the attic, we installed Intello to the bottom chord of the roof trusses. At all outside edges the Intello was carried from the roof trusses down over the double top plates of the walls, anticipating the Intello eventually being installed on the walls, which required a connection point between the Intello on the ceiling and the Intello on the walls.

 

ceiling-wall b4 Intello - Rockwool

Ceiling and wall areas before installing Intello on the bottom chord of the roof trusses and Rockwool batts in the walls.

 

After the Intello was installed on the ceiling, a service cavity (or service core, or service chase) was created with 2×6’s screwed to the bottom chord of the trusses through the Intello.

 

string between junction boxes to make sure they're straight

Service cavity with 2×6’s attached to trusses through the Intello. More info on the service cavity here: Ceiling Details.

 

This gap was going to be a dedicated space for lighting and the 3″ Zehnder tubes of our ERV (as things turned out, we didn’t end up needing this space for the Zehnder tubes).

 

bare trusses - intello - intello w: single layer CB 80 - service chase

Intello coming down from the roof trusses to cover the double top plates on the wall.

 

Before installing the Rockwool batts in the walls, I was also able to fill this gap created by the two 2×6’s on their side that sit on top of the double top plates with leftover pieces of Comfortboard 80. The first piece of Rockwool fit snug inside the gap, while the second piece was attached to the first with some plastic cap nails and the friction supplied by the 2×6’s forming the service cavity. Some additional holding power was added at the gable ends by utilizing drywall clips (visible in the photo below):

 

intello onto top plates

Connecting Intello to top plates with a strip of Tescon Vana tape, creating a clean and solid surface for the eventual Intello on the walls.

 

The drywall clips were helpful in lending support to drywall anywhere that adding solid blocking would be time consuming or a physical challenge.

 

nailer for ceiling drywall

These drywall clips worked great in places where the sheetrock needed additional support.

 

Even though we utilized a 12″ raised heel roof truss, and we had 4″ of Rockwool on the exterior of our Zip sheathing, it was important to fill this gap created by the service cavity to make sure our thermal layer was unbroken around the perimeter of the house (4″ Rockwool on the exterior, 5 1/2″ Rockwool in the stud bays). The outside edge of the roof truss is also the most vulnerable to ice damming, so having the 4″ of Rockwool Comfortboard 80 directly below this area where blown-in cellulose would be installed offers some additional thermal performance to the attic insulation.

Another view of this area where roof truss meets the 2-2×6’s standing on their side, creating a gap between the bottom chord of the roof truss and the top plates on the wall below.

 

sealed top of wall from inside

Roof truss on 2-2×6’s turned on their sides, which have been sealed with Pro Clima tapes. HF sealant completes the airtight connection between the Zip sheathing and the 2-2×6’s.

 

If I had it to do over, I would go with a 24″ raised heel truss, as this would offer not only significantly more R-value in this area (for relatively little expense), it would also make any inspection or repairs in this area much easier to deal with.

 

mbr w: rockwool in walls

Installing Rockwool batts in the walls of the Master Bedroom.

 

As each piece of Rockwool batt was installed, it was important to keep any butt joints between cut pieces tight together. Also, once each piece was snug inside the stud bay I finished by gently fluffing the outside perimeter edges so the Rockwool sat as flush as possible to the 2×6 studs, thus maximizing their R-value.

 

mbr rockwool complete

Master Bedroom ready for Intello on the walls before drywall gets installed.

 

 

family rm w: rockwool

Family room ready for Intello and then drywall.

 

 

Intello

With 4″ of Rockwool Comfortboard 80 on the exterior of our sheathing, the code specifies that we could’ve just used latex paint as our interior vapor retarder (Class III).

Again, to improve our margin for error, I felt like it was worth the added expense and time to install a smart vapor retarder (CertainTeed’s Membrain product would’ve been another alternative) to avoid potential issues with diffusion in the winter.

 

 

When I asked a question on GBA about this issue, the consensus seemed to be that the Intello, although technically unnecessary, was a nice bit of insurance.

 

 

It also added a final layer to all of the previous air sealing details. With redundant layers of air sealing, even if small areas experience failure over time, there are still other areas to back it up, thus maintaining our overall air tightness for the long term.

 

intello at frt dr basement

Intello installed in the basement stairwell by the front door.

 

 

finishing intello mbr

Intello in Master Bedroom nearly complete.

 

Sealing the Intello to the subfloor was one of the final air sealing chores of the build. It was deeply gratifying to finally get to this point, especially since drywall and then flooring were up next.

 

tescon on intello at subfloor

Intello taped to the subfloor with Tescon Vana tape.

 

 

intello tvana complete mbr

Intello complete in the Master Bedroom.

 

 

Thoughts on Advanced Framing Techniques

If I had it to do over, I would use less framing around windows and doors, along with using pocket headers instead of the more traditional insulated headers we ended up with. Pushing the header to the exterior sheathing would mean being able to insulate the pocket on the interior side with Rockwool or dense pack cellulose, rather than the rigid foam we ended up with (unfortunately, XPS in our case).

 

family rm w: rockwool

Family room ready for Intello.

 

Before we had to fire them, the two GC’s we were still working with as framing began were unfamiliar with advanced framing techniques, and they were already struggling to comprehend the many Passive House details in the drawings (not to mention many of the conventional details) so, as I’ve noted elsewhere, I had to pick my battles carefully.

Another change I would make would be at points where interior walls meet up with exterior walls. Rather than using ladder blocking to make the connection, which is still better than more traditional methods (creating a boxed in void that’s virtually impossible to insulate), I would utilize a metal plate at the top of the walls to make a solid connection. In addition to making drywall installation easier since it would create space between the two intersecting walls for sheets of drywall to be passed through, it would also make installing insulation, especially batt insulation, much more straightforward with clear and easy access (no horizontal blocking to get in the way).

 

intello at ladder

Intello at partition wall that meets the exterior wall (using ladder blocking).

 

A ProTradeCraft article discusses what builder David Joyce believes is ‘worth doing’ in terms of advanced framing techniques. Perhaps just as important, he points out what he believes can be safely ignored, or is just ‘not worth doing’ when it comes to OVE.

In this Matt Risinger video, architect Steve Baczek delves into some of the key components he uses to optimize advanced framing techniques:

 

 

In addition to the pocket headers, the idea of using header hangers instead of additional jack studs, seems to make a lot of sense.

And here’s a ProTradeCraft video regarding their own take on Advanced Framing:

 

 

One final change to our framing would be opting for 2-stud corners instead of the California 3-stud corners that we have. Although a relatively small change, I think a 2-stud corner is cleaner and allows for slightly more insulation in this vulnerable area.

Clearly each designer, architect, GC, or framing crew will have their own particular views on advanced framing, so there’s room to make individual choices without undermining the goal of balancing structural integrity with reduced energy demand. Local codes, along with the opinion of your rough framing inspector, will also have to be accounted for. My guess is these techniques will continue to evolve, especially if specific products come to market to aid the process (i.e. reduce the amount of framing lumber required while ideally also lowering labor costs, all without negatively affecting the overall strength of the structure).

 

intello kitchen

Intello in the kitchen complete.

 

One final attempt at some additional air sealing was around outlet and switch boxes as they met up with the Intello. With a bead of HF Sealant, it was easy to make an airtight connection between the Intello and the box.

 

cu intello at outlet

Completing connections around outlet and switch boxes with HF Sealant.

 

At doors and windows, I finished these areas off with a strip of Tescon Vana tape, just as I had at the top and bottom of the walls.

 

intello complete br2

Completing Intello around a bedroom window.

 

Because corners tend to be problematic in terms of air leakage, I also added a dab of HF Sealant to these areas for the sake of some added redundancy.

 

lwr lft corn wdw w: intello & tape

Lower left corner of window with some added HF Sealant in the corner.

 

 

upper rgt corner wdw w: intello

Upper right corner of a window just before final piece of Tescon Vana tape is run across the top of the window frame, tying together the Intello and the light blue Profil tape that is air sealing around the window.

 

 

Sound Attenuation

Since we designed our home with a smaller than average footprint, incorporating many Not So Big House principles (roughly 1500 square feet for the main floor, with another 1500 square feet in the full basement below), one way to make the floorplan feel larger than it actually is was to provide some sound attenuation in key areas (we incorporated several other techniques to “expand” the feel of the floorplan that will be discussed in upcoming posts regarding interior design).

For instance, we installed the Rockwool in the long partition wall that runs east-west down the center of the floorplan. This wall helps define the barrier between public areas (kitchen and family room) on the south side of the home and the private areas (bathrooms and bedrooms) on the north side of the home.

We could’ve used Rockwool Safe ‘n’ Sound, but at the time, during construction in the fall of 2017, it was a special order item in my area, whereas the batts were already in stock, both for my main 2×6 partition wall, a 2×6 plumbing wall, and the remaining 2×4 walls that we felt could benefit from the Rockwool.

In the photo below, the Rockwool in the main east-west partition wall is covering the refrigerant and drain line for one of our three Mitsubishi heat pump heads, along with the usual electrical conduit for outlets and light switches.

 

rockwool 2nd br entry hall

Rockwool added to some interior walls for sound absorption, thus reducing unwanted sound transmission between certain spaces.

 

Here’s another view of this partition wall, this time from the opposite side inside the second bedroom:

 

rockwool 2nd br interior side

Same section of east-west partition wall from inside the second bedroom.

 

We also added Rockwool to the wall that connects the master bath to the 2nd bedroom bath, and between the 2nd bath and 2nd bedroom. The Rockwool was even added to the wall between our kitchen and utility room, where we have our washer and dryer, in the hopes that it would limit the amount of noise coming from the machines (which it thankfully has).

 

rockwool bath walls

Rockwool in bathroom wall around main waste stack.

 

Although this doesn’t make for a totally sound proof connection between spaces (we weren’t prepared to take things that far — roughly equivalent to air sealing a Passive House in the amount of detail required), the ability of the Rockwool to significantly muffle sound between rooms is quite impressive and, for us at least, well worth the effort and added expense.

 

rockwool kitch - utility

Rockwool in the wall between the kitchen and utility room.

 

For instance, while standing in the master bathroom, should someone be running water or flushing the toilet in the 2nd bathroom directly on the other side of the wall, the majority of the sound that reaches your ear comes by way of the master bedroom doorway, not through the wall directly. Out of curiosity I tested this idea with music playing on a portable stereo in the 2nd bathroom with the same results — sound through the wall is dramatically muffled, while the same sound that easily travels out of the bathroom and makes it way via the bedroom doorway is crystal clear. With the door to the 2nd bathroom and our master bedroom door closed, this same sound is obviously further reduced.

 

 

It’s also nice to watch TV in the family room and know that as long as the volume is at a reasonable level you’re not disturbing anyone trying to sleep or read in the two bedrooms. This kind of sound attenuation also adds a level of privacy to the bathrooms while they’re in use.

And, again, it’s not that no sound is transmitted from one room to another, rather it’s almost entirely limited to doorways, thus significantly reducing the overall impact of the noise that is transmitted. In other words, our goal was rather modest, we were just after significant sound absorption, not sound proofing (e.g. the level of noise cancellation required in a professional recording studio or a high-end home theater room).

 

 

As a result, I would definitely use Rockwool for sound absorption again. In fact, I can’t imagine going without this kind of sound attenuation (or something akin to it using other products or techniques outlined in the videos above) now that we’ve been able to enjoy it in our new home. It effectively prevents the issues often associated with so-called “paper thin” walls.

Arguably, addressing this issue of unwanted sound transmission is even more important in Passive Houses or high-performance homes that are already much quieter than conventional homes because of the extensive air sealing and well above code levels of insulation. In our own case, outside noises either disappear entirely or are significantly muffled — this includes a commuter train a couple of blocks away.

As a result, any noises within the home itself become much more pronounced since they don’t have to compete with the typical noises coming from outside the home. For instance, when we first moved in the fridge in the kitchen was easily the most obvious, consistent sound in the house. After a couple of weeks it just became background noise we’ve grown to ignore, but it was surprising just how loud it was initially, especially our first few nights in the home when everything else was so quiet.

In addition to excessive air leakage and obvious temperature swings between rooms, along with poorly sized or placed window layouts, the lack of any sound attenuation between rooms is one of the issues we notice the most when we’re inside more conventionally built homes. Much like all of the conveniences associated with a modern kitchen, it’s easy to take something like effective sound attenuation for granted until you’re required to go without it (e.g., in the case of kitchens while on a camping trip or waiting for a kitchen to be remodeled).

With all of the Rockwool batts in place, and the Intello installed over the exterior walls, drywall could finally go up.

 

 

Drywall

We went with USG 5/8″ EcoSmart drywall (GBA article on EcoSmart). We chose the 5/8″ over 1/2″ mainly for added durability and some slight sound deadening between rooms.

 

 

I had read about Certainteed’s AirRenew drywall, but it sounded like the only VOC it absorbed was formaldehyde, which, if I understand the issue correctly, can be safely avoided with the use of appropriate cabinets and furniture. If memory serves, AirRenew works by utilizing a compound similar to triclosan, meaning a biocide, which some believe can have potentially serious health effects. It’s not clear to me, even now, whether the use of AirRenew drywall makes sense, or exactly what compound (or series of compounds) are utilized to absorb the formaldehyde since Certainteed has remained silent on this point, claiming the information is proprietary. Nevertheless, it has a Declare label, so ILFI must believe it’s reasonably safe to have on painted ceilings and walls.

At any rate, we wouldn’t be bringing in any new furniture that would have elevated levels of VOC’s (including flame retardants) once construction was complete. Since our last house was significantly larger, roughly 2,800 sq. ft., it was fairly easy to downsize, donating or giving away what we couldn’t use in our new house, while holding on to our favorite and most useful pieces. It also helped that we never really filled up our last house (e.g. we never got around to purchasing a formal dining room set), so we didn’t have as much “stuff” to discard as we might have.

Moreover, by being mindful of every finish we create or use (primers, paints, wood flooring, grout sealer, caulks and sealants, kitchen cabinets etc.), along with any other products we might bring into the new house (e.g. surface cleaners, new furniture, fabrics, even perfumes and colognes, etc.), we’re hoping to maintain a high level of IAQ.

The International Living Future Institutes’s Red List and their database of Declare products were a big help to us, even though we’re not pursuing any kind of certification with them. The Greenguard certified label was also helpful, in particular when it came time to choose tile and grout.

By consciously choosing every product and material that comes into the home, it’s possible to at least reduce our exposure to harmful VOC’s and chemicals. While still imperfect (Who can you trust?), these kinds of programs do allow designers and homeowners to take some control over the environments they’re creating and living in, which is empowering to a degree. Far better if the US regulatory bodies operated under a precautionary principle model when it came to industrial products.

Frankly, in a rational system, one that was truly looking out for the best interests of consumers, this kind of research — time consuming and frustrating busy work to put a finer point on it — would be considered laughable if not horrifying. In a rational system it would be safe to assume that any product for sale, apart from some careful instructions on their use and disposal, would be safe to have inside your home without having to worry about short or long term health implications. Nevertheless, if unintended health consequences are to be avoided during a renovation or a new construction build, consumers have little choice but to do the necessary homework (or pay someone else to do it for them) and be as thoughtful as possible with their selection of materials.

 

drywall family rm

Kitchen and family room after drywall was installed. Ready for primer, paint, and flooring.

 

Now that all of the elements of our wall assembly were complete, it was time to have some fun with final finishes: flooring, wall colors, wood trim, doors, kitchen cabinets…

Ceiling Details (Air Sealing #4)

0

Installing Intello

We thought about using the Zip sheathing as our air barrier on the ceiling, attaching it to the bottom of the roof trusses, something I had seen on other builds, but after learning about Intello we decided to use that instead:

 

 

Floris Keverling Buisman, from 475 High Performance Buidling Supply, did our WUFI analysis for us, and he suggested the Intello would be a better fit for our project. The Intello is a smart vapor retarder, so it can expand and contract when it’s needed, and it’s obviously less physically demanding to install than the Zip sheathing.

Once the air sealing was complete around the top of our outside perimeter walls, and the insulation chutes had been installed, we were almost ready for the Intello. At the gable ends of the house, one last detail needed to be put in place, circled in red in the picture below:

 

2x6 on its side

2×6 on its side, circled in red.

 

By adding this 2×6 on its side, which is in the same plane as the bottom of the roof trusses, it makes it possible to carry the Intello over the transition from the ceiling (under the roof trusses) to the walls (top plates). This is one of those details that is hard to ‘see’ when in the planning, more abstract, and two dimensional phase of designing a structure.

 

another angle of 2x6 on side

Another view of the 2×6 lying flat in the same plane as the bottom of the roof truss (far left).

 

Once the trusses were placed on the top of the walls and you start imagining how the Intello will be attached to the ceiling, it becomes much more obvious that something in this space at the gable ends of the house is needed in order to accomplish the transition from the ceiling to the walls.

 

long view w wdw to front door framing

Marking progress: Ceiling ready for the Intello.

 

After reading about so many other projects that utilized Intello, it was exciting to unwrap the first box.

 

unwrapping first box of Intello

Big day: opening the first box of Intello.

 

The directions are pretty straightforward, and the product is relatively easy to install as long as you don’t have to do it alone.

 

Intello instructions

Reading through the instructions one last time before starting.

 

I didn’t get a chance to touch and feel the product before ordering (always fun to do with any new product), so here are some close-ups of the Intello to give you some sense of what it’s like:

 

Intello close up front side 2

Front: shiny side of the Intello — this side will be facing the living space.

 

I was curious about its strength and tried to tear it with various objects, including the cut ends of 2×4’s and the brackets we eventually used to help establish our service core. The material is surprisingly tear resistant, but a utility knife, or a stray sharp edge will cut through it (as our first plumber proved to me with his careless actions — a story for another post).

 

close up Intello back side

Back: matte side of the Intello — this side will be facing the attic.

 

Having never used the Intello before, I decided to start small and began by experimenting with it in a corner. Getting the corners fully covered while getting the material to sit flat before applying the blue Tescon Vana tape proved to be the most challenging part of using the Intello.

 

experimenting w: Intello in corner w: chutes above

Starting in a corner to get a feel for how the material will work.

 

Here’s two more pictures of the flat 2×6 helping to make the transition from the ceiling to the wall on the gable ends of the house:

 

 

In order to attach the Intello to the bottom of the roof trusses, we used the staple gun shown below. Loading it is kind of counter-intuitive (online reviews complain about it not working out of the box, but my guess is — like me — they were trying to load it improperly), but once I figured it out, it ended up working really well, almost never jamming, and it’s very comfortable to hold because it’s so light weight. It should work with any standard air compressor. It was available on Amazon, and in Menards, a local big box store here in the Chicago suburbs.

 

staple gun

The staple gun we used to attach the Intello to the underside of the roof trusses.

 

Think you know how to load it?

 

side view of open staple gun

Staple gun ready for loading.

 

Guess again.

Instead of loading from the bottom, like all the finish nailers I’ve ever used, the staples load higher up, where the staples exit. And yes, there was quite a bit of swearing as I made the transition from “What the…” to “Ohhhh, now I get it…”.

It didn’t help that there were virtually no instructions on its use, apart from a tiny black sticker with an arrow pointing to where to load it (which, of course, I only noticed after figuring this out).

 

staple gun open w: staples

Loading the staple gun.

 

We started with these staples:

 

close up Arrow staples

 

But we ended up going with these instead:

 

close up heavy duty Arrow staples

 

They seemed to grab better (presumably the sharp ends make a difference), and they sit flatter on a more consistent basis (less time having to go back, or stop, to hammer home proud staples flat).

 

stapling Intello to ceiling

 

As we rolled out the Intello, it took some practice to get it to sit taught and flat before stapling.

The dotted lines near the edges of the Intello help you keep the rows straight as you overlap two sheets and progress from one row to the next. The lines also make it easier to maintain a straight line with the Tescon Vana tape (don’t ask me when I realized this latter detail — too embarrassing to admit).

 

taping Intello along dotted line

Follow the dotted line…

 

We checked our initial row from above in the attic:

 

first row of Intello from attic

View from the attic as the first row is installed.

 

Working our way through the interior walls, especially the bathrooms, was more time consuming and took more effort (I grew to hate those interior bathroom walls — first the Intello, then the service core details described below), but once we were out in the open the Intello was fairly easy to install.

 

Intello covering ceiling, chutes in bg

First three rows of Intello as they approach the basement stairwell. Note the insulation chutes in the b.g. in the attic — they took up so much time and effort, and now they slowly disappear (just like most important aspects of infrastructure).

 

 

northwest corner of air sealed attic w: Intello

View of the Intello from a corner of the attic — note the 2×6, far left, lying flat, that helps the Intello transition from the ceiling to the top of the walls.

 

 

Intello from attic at outside corner

Another view of the Intello from the attic after installation.

 

As Eduardo and Jesus rolled out sections of the Intello I followed, pulling on the Intello a little to help make it sit tight and flat before stapling it in place.

 

Eduardo and Jesus helping me put up Intello on ceiling

Eduardo and Jesus giving me a hand installing the Intello.

 

There were a couple of sections, some of the first ones we installed, that I managed to wrinkle (one, in particular, became problematic during our first blower door test — and, of course, it was in a tight spot around the bathroom shower area), but overall, the installation of the Intello went pretty well. Like most things you do for the first time, we got comfortable and good at it just as we were finishing up.

 

Eduardo Jesus and full moon night sky in b.g.

Eduardo and Jesus helping me finish up the main areas as a full moon makes the night sky glow outside in the background. It was a long day (longer still for Eduardo since Jesus was talkin’ trash and nonsense all day — they’re football teammates — needless to say, Eduardo has the patience of a saint).

 

 

Intello from attic w: insulation chutes in bg

View of the Intello from the attic — offering up its 2001: A Space Odyssey glow.

 

After learning about a project on the 475HPBS website…

 

Masonry Retrofit

 

… we decided to use the Tescon Vana tape to cover the staples, as well as all the seams, in the Intello. I have no idea what actual impact covering the staples has on air tightness, but visually as you tape over the staples you can see how, if nothing else, it will help the staples resist pulling out under pressure from the eventual blown-in cellulose in the attic.

Even as the build progresses, it’s interesting how details like this pop up, making building “green” a never-ending process of learning something new — someone’s always coming up with a new product or a new way to do things better, faster, or less complicated — which makes the process itself very exciting.

 

OB applying tape

OB — the Palatine High School legend — the man, the myth, helps me tape over the seams and staples in the Intello. One of the many jobs he’s been kind enough to help me get done. We’d be so far behind schedule without all of his help.

 

 

on plank

View from above what will be the basement stairwell while installing the Intello on the ceiling.

 

 

installing Intello on the ceiling around the basement opening

Almost finished installing the Intello — saved the hardest part for last.

 

This was a nice moment, being able to look back and see the Intello completely installed. It’s almost a shame that we have to cover it with drywall.

 

Intello on ceiling long view

Intello installed and taped.

 

 

2×6 Service Core

A design goal for the ceiling was to keep mechanicals, like HVAC and electric, on the conditioned side of the ceiling air barrier. By doing this, we avoid having to insulate any ductwork for HVAC, or air sealing and insulating around ceiling lights. In effect, we completely isolate the attic, making its sole purpose (apart from ventilating our “cold roof” assembly) holding our blown-in cellulose insulation (this set-up makes it much easier to air seal the ceiling and get the insulation right — at least based on the projects I’ve read about). In order to do this, we created a service chase, or service core, with 2×6’s:

 

service chase w: first couple of 2x6's

First couple of 2×6’s going in.

 

In addition to serving as a space to safely pass mechanicals through, the only other job for the 2×6’s is to hold up the ceiling drywall. The roof trusses, directly above each 2×6, are still carrying the load of the roof and stabilizing the perimeter walls.

 

Simpson L-Bracket w: fasteners

Simpson bracket and fasteners we used to attach the 2×6’s to the underside of the trusses.

 

Here’s what the 2×6’s looked like with their brackets once everything was installed.

 

close up service chase w: bracket-screws

Service core 2×6 with bracket and Simpson SDS bolts.

 

OB and my wife were invaluable as they helped me cut and install all the 2×6’s.

 

 

We installed the brackets first, before raising up each individual 2×6 to fit against the brackets.

 

jesus helping me install 2x6's

Jesus helping me install the 2×6’s.

 

Since the brackets were directly attached and under a roof truss, we were able to keep the 2×6’s fairly straight, even when the board itself was less than perfectly straight.

 

service chase w: just brackets

Brackets installed before the 2×6’s go up.

 

A feisty Robin kept trying to set up a nest on our partition wall (our windows and doors aren’t in yet). Apparently she believed we had created an elaborate bird house just for her. It took almost a week before she finally gave up — but not before starting multiple nests in multiple spots along the wall.

 

bird nest

Robin making one of her many attempts at a nest on our partition wall.

 

Along the outside walls, at the top of the wall assembly, there was a gap that we utilized for maintaining continuous insulation. This meant there will be no break in our thermal layer going from the blown-in cellulose insulation in the attic to the monolithic layer of Roxul Comfortboard 80 (2″ + 2″) that will be on the exterior side of the Zip sheathing.

 

trusses - Intello - Roxul

Adding Roxul at the top of our wall.

 

 

layer of Roxul at top of outside wall

Close-up of the Roxul going in on top of the top plates.

 

 

Intello - Roxul - wall

Another view after the Roxul has been installed.

 

 

long view from west window w: service core complete

Marking further progress: Intello and 2×6’s installed.

 

Once the 2×6’s were up, we had to install our pieces of 1×4 in order to prevent the 24″ of blown-in cellulose that will be going into the attic from causing the Intello to sag.

The plans called for the 1×4’s to be installed right after the Intello, but before the 2×6’s, which would have been a lot easier and quicker, but, unfortunately, the GC’s we fired installed the interior walls too high, making this impossible.

Here’s what it should’ve looked like if we could’ve done Intello and then the 1×4’s (photos courtesy of 475 HPBS) before installing the 2×6 service core:

 

 

Having no choice but to methodically cut each 1×4 to fit between each set of 2×6’s, OB was nice enough to help me get it done.

 

close up of partition wall w: service core and 1x4 cross battens

 

Installing the 1×4’s between the 2×6’s began with some experimentation:

 

service core w: cross battens and L-brackets

Using L-brackets at first —  it proved too time consuming and expensive.

 

After experimenting with a finish nailer (too easy to miss and penetrate the Intello), we eventually settled on Deckmate screws. It was definitely a laborious process, but eventually we got into a rhythm and got it done, although we wouldn’t recommend doing it this way — way too time consuming.

 

ceiling w: 1x4 battens

Completing our service core.

 

We tried to keep the 1×4’s about 16″ apart, which should prevent any significant sagging in the blown-in cellulose from occurring (I’ll post photos once the cellulose has been put in the attic).

A lot of blood, sweat, and tears have gone into completing this house.

Here’s some proof:

 

screw got me

A decking screw got me.

 

In trying to avoid puncturing the Intello, I would hold a couple of fingers on the back side of the 2×6, feeling for any screws that would come through on a bad angle. A couple of times I drove a screw too quickly and paid the price.

 

looking up at Intello and service core from basement

View of the service core from the basement. Installing the 2×6’s and the 1×4’s also required walking the plank a few more times.

 

 

installing ceiling w: OB

OB making my life easier as I work on the plank installing the 1×4’s.

 

 

Maintaining the Intello After Installation

Unfortunately, there was a delay in getting shingles on our roof, due in large part to our first disorganized and incompetent plumber (again, more on this later). Consequently, we were in the awkward position of having our ceiling air barrier and service core all set up but every time it rained we still had a leaking roof. In most areas it wasn’t a big deal, but in about a dozen spots rain would collect and, in some cases, cause a bulge in the Intello as it held up the weight of the captured water. To relieve and ultimately to avoid this pressure, I cut small slits in the Intello where the rain would consistently collect.

 

small hole in Intello for rain before shingles

Slit in the Intello to allow rain water to fall through, marked with a red marker for easy identification later.

 

Once the shingles were finally on, I went back and found all of these slits and taped over them with the Tescon Vana.

 

Tescon Vana covering hole in Intello

Hole in the Intello covered and air sealed with the Tescon Vana tape.

 

We also found a couple of weak spots in the Intello as we installed it, and even later, during the installation of the service core. These spots were marked as well, and they, too, got covered with the Tescon Vana tape just for added insurance against air leakage.

 

imperfection in the Intello marked for Tescon Vana

Weak spot, or imperfection, in the Intello. This got covered with Tescon Vana as well.

 

After having to fire our GC’s, we couldn’t have kept the project going without the help of family and friends. As awful as some aspects of the build have been, it’s been heartwarming to find people willing to help us see the project through to the end (much more on this later).

 

2 Cheshire Cats

Couple of Cheshire cats — clearly up to no good — helping us to keep the job site clean.