kimchi & kraut

Passive House + Net Zero Energy + Permaculture Yard

Tag Archives: air sealing a passive house

Attic Access Hatch (Air Sealing #7 )

0

Our attic is designed mainly to hold our blown-in insulation (a future post will go over the details), as opposed to a place for running HVAC equipment, conduit for electric, or as a potential area for carving out additional storage space.

Nevertheless, in order to have access to our attic for future maintenance or repairs, I installed a well-insulated attic hatch in our master bedroom closet ceiling.

Following Passive House and Pretty Good House principles required trying to protect the thermal envelope, even in this relatively small area, in order to avoid what can be a notorious point of air leakage and heat loss (i.e., the stack effect).

There were two main products I considered using for this:

Battic Door (R-50 / without ladder)

They also have a product that allows for a built-in ladder for easier access to the attic (you won’t need to drag your ladder in from the garage) while also maintaining a high R-value:

Battic Stair Cover

The other product I considered using was from ESS Energy Products:

Energy Guardian Push Up Hatch Cover

We ended up going with the Battic product, which I purchased through the Home Depot website (this saved me a trip to the store since it was delivered to site).

Some other products that I’m aware of include:

475 High Performance Building Supply used to sell a Passive House certified version with a fold-down ladder included, but I don’t currently see it listed on their website:

WIPPRO Klimatec 160

Or this product that also incorporates a ladder is available from Conservation Technology:

Attic Ladder

Because the Energy Guardian hatch is made out of rigid foam, I thought the Battic door was the better choice since it seemed like it would be a little sturdier and more durable. To be honest, once the product arrived and I unpacked it, I realized it was something I, or anyone with basic carpentry skills, could put together themselves (assuming you have the time).

Following the directions, I cut an X in the Intello on the ceiling between two roof trusses (and our 2×6 service core below each truss) in order to establish the opening for the Battic frame.

I folded the cut edges of Intello up into the attic for the two long sides of the Battic frame. For the two shorter sides of the Battic frame it was easier for air sealing to push the Intello down into the living area.

At this point I was able to screw the Battic frame into place.

looking up into battic attic hatch
Battic frame initially installed between roof trusses and 2×6 service core.

Once in place, I used a mix of Contega HF Sealant and Tescon Vana tape to air seal the Intello to the Battic frame.

battic - taped sealed to intello
Air sealing the Intello to the Battic frame (short side between trusses).
tescon vana air sealed battic w: HF behind Intello
Another view of the Intello sealed to the Battic frame.
looking down at air sealed battic from attic
View of the installed Battic frame from the attic.
attic access air sealed - attic side
Air sealing the connections between the Intello, the Battic frame, and the roof trusses in the attic.
air sealed corner of battic
Using HF Sealant to make the connections as air tight as possible.

Once the outside perimeter of the Battic frame had been air sealed to the Intello, the only place left for air infiltration was where the lid would meet the frame of the Battic hatch once it was installed (more on this later when I discuss my first blower door test).

There was some additional framing required, but it was just a couple of “headers” between the roof trusses to add structural integrity to the two shorter sides of the Battic frame.

attic access from below
Battic frame with additional 2×6’s on one of the short sides.

Since we were using a significant amount of blown-in insulation in the attic, it made it necessary to build up the sides of the Battic frame in the attic with some plywood to get the top of the opening above where the insulation would eventually stop.

Here’s another view of the 3 sides of plywood installed:

attic access looking down - directly

The fourth and final side of plywood was installed just prior to blowing in the insulation — in the interim this made getting in and out of the attic much easier.

After a couple of practice attempts, it quickly became apparent that raising and removing the lid once in place, and fighting to get it back down into the master bedroom closet, wasn’t worth the trouble. Instead, I built a small bench in the attic next to the Battic frame so I could push the lid up above the level of blown-in insulation, this way it could have somewhere to safely sit while dealing with any issue in the attic.

bench for attic access lid
Battic lid resting on the bench.

It’s very easy to grab the lid off the bench and bring it back down into position while slowly walking down the ladder in the master bedroom closet to make the final connection/seal.

Although the installation process was fairly straightforward and headache free for the Battic product, if I had it to do over, I think I would have the attic access point on the exterior of the structure, for example, on the gable end of the house in the backyard.

GBA – gable access to attic
Custom Gable Vents
AZdiy

Putting the access point above the air barrier would make meticulously air sealing the entry point for the attic less important, so keeping water out of the attic would be the main goal. An additional plywood buck would’ve been necessary, replicating what I did for our windows and doors (more on this later), but I think it still would’ve been the better option overall.

Putting the attic access on the exterior of the house would also mean avoiding an ugly hole somewhere in our drywalled ceiling. No matter how nicely trimmed out, these attic access points on the interior of a home never look right to me. We’ve tried to hide ours as much as possible by sticking it in our master bedroom closet, which has worked out well, but not having one at all on the interior of the house would make for a cleaner, better solution in my opinion.

If granted a do-over, I would also add a cat walk in the attic through the roof trusses. This would make getting to any point in the attic much easier to navigate. It would also help to avoid disturbing the blown-in insulation too much.

And here’s a photo of the bench in the attic, next to the opening for the Battic attic hatch, after the blown-in insulation was installed:

bench surrounded by cellulose
Bench for the Battic hatch lid.

WRB: Zip Sheathing (Air Sealing #6 )

2

Sealing the Seams and Penetrations in Zip Sheathing

Note: This post will concentrate on the Zip sheathing itself, as it relates to seams and penetrations. I’ll address how I sealed around openings for windows and doors, along with our attic access hatch through the Intello on the ceiling in separate, future blog posts.

We used Zip sheathing as our WRB (weather resistant barrier — sometimes it’s referred to as a water-resistant barrier) based largely on Hammer and Hand projects:

Also, for years I’d seen it used on various jobs featured in Fine Homebuilding Magazine.

As the 7/16″ Zip sheathing went up, I taped most of the seams with Pro Clima’s  3″ Tescon Vana tape (available at 475 HPBS), but also their Contega tape (6″ wide), which I used mainly for outside corners and larger seams in the Zip (mainly where the horizontal seam in the Zip transitioned from the exterior walls of 2×6 framing to the roof trusses — shown in a photo later in this post).

My wife and daughter also cut up the Tescon Vana tape into small pieces in order to cover all the nail and screw holes in the Zip sheathing.

beast and eduardo taping nail holes
The Beast and Eduardo team up to tape the nail and screw holes on the lower sections of Zip sheathing around the house.

The nail holes were initially sealed with HF Sealant, also available from 475 HPBS, thus giving them double coverage — this was discussed earlier, here:

Framing (Air Sealing #2)
north side house garage gap long view
Northeast corner of the house where it meets the garage.

Our decision to use the Zip sheathing was also discussed earlier, here:

Wall Assembly

And here’s a good video discussing the Zip sheathing and its benefits (and its place in the evolution of building science):

If I had it to do over, I think I might be tempted to use 1/2″ exterior grade plywood as my sheathing (there are any number of WRB options these days). This would be sealed on the exterior side with either a liquid membrane, like Prosoco’s Cat 5, or a peel-n-stick tape like Henry’s Blue Skinor even another 475 HPBS product Solitex Mento 1000.

The Zip sheathing works, and the exterior green skin held up nicely during construction, even as it sat exposed for nearly 10 months after we fired our GC’s and struggled to keep the project moving forward. Nevertheless, it is little more than glorified OSB, which comes with certain inherent weaknesses.

Matt Risinger does an excellent job of delineating the cost/benefits of using either OSB or CDX plywood as a sheathing material:

house-garage-gap-for-4%22-roxul
Garage (at left) house (at right) connection. Gap will eventually be filled with 4″ of Roxul Comfortboard 80.
garage-house-gap-2
Closer view of this same garage – house connection. Flashing will cover the bottom of the Zip and then carry over the top of the Roxul that covers the foundation.
north-side-seams-taped
View of the north side of the house as Tescon Vana tape air seals the nail holes and the seams in the Zip sheathing.

View of the West facade with Tescon Vana tape, along with the black Contega tape at larger seams (e.g. where the walls meet the roof trusses) and outside corners.

west side being taped
West facade as taping proceeds.
taping north side before mechanicals : windows
Northwest corner of the house, transitioning from the Tescon Vana to the black Contega tape at the corner.
finishing up seams on west facade
Finishing up some of the final seams in the Zip on the West facade.

Once the Zip was fully installed, it was readily apparent that some of the seams, especially near the base of the first floor where a horizontal seam ran around the entire structure, would need to be tightened up.

Here’s a view looking down on one of these areas where the Zip sheathing did not sit flat against the framing members:

down Zip - out of alignment before 1x4's
Horizontal seam in Zip sheathing refusing to lie flat against the 2×6 framing members.

Using a 1×4 in each stud bay, I was able to pull the seam in the Zip sheathing together. It wasn’t always perfect, but the difference was visibly significant and in most areas well worth the effort.

Placing a 1×4 into position over the seam in the Zip, I would drive a couple of screws towards the exterior.

1x4 in study bay before HF
1×4 used to pull an unruly seam in the Zip sheathing together.
screw thru zip for 1x4 in stud bay
Screw from the interior poking outside as it initially gets the 1×4 in place.

Once securely attached from the interior, I went outside and drove several screws into the Zip, both above and below the seam in the Zip, to pull the seam tight to the 1×4. At that point, I could go back inside and remove the two screws that were driven towards the exterior.

In addition to air sealing the exterior side of the Zip sheathing, I also invested some time in air sealing the interior side of the Zip as well. Below is a long view of several stud bays with 1×4’s installed, but before air sealing gaps around the 1×4’s and lower areas of the stud bays with HF Sealant.

stud bays w: 1x4's, before HF

Long view after applying the HF Sealant:

ceiling walls - HF Sealant

Close-up of the interior side of the Zip sheathing meeting a 2×6 framing member in a stud bay after applying a thick bead of HF Sealant:

thick bead HF sealant in stud bay

Close-up of lower area of a stud bay after air sealing with the HF Sealant (it transitions from a light to darker green as it dries):

stud bay w: 1x4 and HF sealant
1×4 installed and HF sealant applied to all gaps and screw/nail holes in the stud bay.

I held off on using the HF Sealant at the wall sill plate/subfloor connection until just prior to installing the Intello on the walls since this area constantly attracts dirt and debris.

Sealing on the interior side with HF Sealant, even between vertical framing members, means that even if there are any weaknesses in either the Zip sheathing or the Tescon Vana tape at these points, air won’t find an easy way in, since it will be blocked from the interior side as well (there won’t be a difference in air pressure to help the outdoor air make its way indoors).

This kind of redundancy in air sealing should give the house long-term protection against air leaks, thereby aiding the long-term durability of the structure, as well as making it a much more comfortable environment to live in.

interior walls sealed w: HF sealant
Using HF Sealant between vertical framing members.

I also spent some time on the roof trusses, sealing around nails, the top plates of the exterior walls, and the many Zip-framing member connections in what will eventually be the attic.

sitting on roof trusses sealing
Sealing around fasteners and framing in the attic with HF Sealant.

This had less to do with air sealing and more to do with preventing any potential water intrusion since this area is technically above our ceiling air barrier (the Intello), which is detailed here:

Ceiling Details (Air Sealing #4)

Inventory of Penetrations through the Zip Air Barrier

I made a mock wall assembly before construction began, which I discussed here:

Wall Assembly

This proved helpful when explaining to the various subs how to help me protect the air barrier — especially when it came time to drill holes through the Zip sheathing. Of particular importance was making holes closer to the center of a stud bay, as opposed to hugging a corner or side of one of the 2×6 framing members. A hole cut too close to a stud or a roof truss is much harder to properly air seal.

bad-good-mock-wall-assembly-for-penetrations
Interior side of our mock wall assembly showing how all penetrations through the Zip should be in the middle of our framing members. Our original plumber was the only trade that managed to screw this up (it’s no coincidence that he was also the only sub that we had to fire).

In effect, any time a sub had to make a penetration through the air barrier we discussed the details, and once the cut was made I immediately air sealed the penetration both on the exterior and interior side.

By sealing each hole in the Zip on both sides, again I hope it ensures the long-term durability of the overall structure. The main argument for this strategy assumes the exterior side of the sheathing will face more extreme temperatures, and fluctuations in humidity, and presumably even wind-drive rain if/when it gets past the siding and 4″ of Roxul insulation, putting it at greater risk of failure (especially in the long term). By taking the time to air seal the interior side, it just gives the overall air barrier, and therefore the structure, a better chance at avoiding air and water intrusion (that’s the goal anyway).

For air sealing I used a mix of tapes, HF sealant (later even some Prosoco products), EPDM Roflex gaskets, and duct seal.

The penetrations for electric service were my first go at using the Roflex gaskets:

John & Donny installing meter
John and Danny installing the electric meter.

The smaller diameter Roflex gasket comes with its own Tescon Vana tape, which makes installation straightforward.

close up meter thru Zip w: TVana gaskets
Electric meter with Tescon Vana – Roflex gaskets installed.
meter - hole, t. vana prior to appl.

Exterior view of electric Meter air sealed with gaskets and Tescon Vana tape:

electric meter close up gasket : t. vana

Once sealed on the exterior side, I went inside to seal the penetrations for a second time:

meter to panel - interior
Air sealing the electric meter on the interior side.

It was a big moment when the electric panel went in:

main panel in - progress
The house is ready for power.

The installation of our solar panels required air sealing two penetrations — one through the Intello on the ceiling on the inside of the structure, along with one exterior penetration through the Zip:

Details regarding the installation of our Solar array can be found here:

Solar on the Roof
corrected solar on:off
Solar disconnect (on/off) with its Tescon Vana gasket.

We also had two frost-free hose bibs, or sill cocks, installed, which also required gaskets on the exterior and interior sides of the Zip sheathing.

hosebib w: gasket
Frost free hose bib with gasket.

One of the big advantages a Roflex gasket has over using a sealant like the green HF Sealant, or Prosoco’s Joint and Seam, is the pipe can be moved in and out even after air sealing, which is especially helpful for installing siding later.

We left the sill cocks loose (unconnected to water supply line inside the house), allowing the siding guys to adjust in and out for a more precise fit of the charred cedar siding.

Below is an example of what conduit through the Zip sheathing looks like before it gets a gasket and some tape:

exterior light conduit before gasket
Penetration for conduit before gasket.

And here’s the conduit after the gasket and some tape:

gasket for exterior light
Conduit after gasket.

Note the extended length of the conduit, anticipating our 4″ of Roxul covering the Zip, 2-layers of furring strips (vertical then horizontal — for vertically oriented siding), and the eventual charred cedar siding.

The photo below shows the penetrations, along with multiple lines of conduit, for our eventual ductless mini-split Mitsubishi heat pump system. The empty hole will be our disconnect for the heat pump. I’ll go into the details of our ductless mini-split system in a future post.

conduit for heat pumps
Penetrations for our Mitsubishi heat pump system.

Same series of conduit pipes after gaskets and being connected to the compressor outside:

heat pump electric w: t. vana before disconnect

In addition to the conduit for electrical hook-up, the Mitsubishi heat pump system required a separate penetration for running the refrigerant lines to the compressor:

hole in Zip for heat pump pvc
Hole cut for the heat pump refrigerant lines.

After discussing it with Mike from Compass Heating and Air, who did our ductless mini-split installation, we decided to use a 4″ section of PVC plumbing pipe as our “conduit” for running the refrigerant lines from the interior of the structure to the outside:

heat pump - pvc pipe in hole for lines
4″ PVC plumbing pipe for the refrigerant lines.

After the PVC was passed through the hole in the Zip, we added a 2×4 underneath it to give it some added stability, along with the usual gasket and tape for air sealing around the PVC pipe:

heat pump - int side - pvc, gasket, 2x4
Before applying Tescon Vana around the Roflex gasket.

Once the refrigerant lines were passed through the PVC pipe, it was clear that some additional air sealing was required.

gaps around pvc lines before duct seal
PVC pipe with refrigerant lines installed.

I filled the gaps around the refrigerant lines from the interior and exterior sides with duct seal. Before stuffing in the duct seal at either end of the PVC pipe, I added bits of Roxul Comfortboard 80 into the pipe to try and give added R-value to the interior of the PVC pipe (hoping to prevent any possible condensation from forming inside the pipe).

duct seal label
A real lifesaver when it comes to air sealing. Readily available at big box stores, or online at Amazon.

Duct seal proved especially helpful at air sealing multiple weak points in the structure —areas that would’ve been difficult or impossible to air seal with just tape, gaskets, or sealants:

heat pump pvc w: duct seal close up interior
Using duct seal to block off air from the interior side.
heat pump pvc w: gasket before t. vana close up
Another view of the PVC pipe with duct seal.
heat pump refrigerant lines - int. leaving basement
The refrigerant lines transitioning from the basement ceiling to the PVC pipe before leaving the structure.

Once the interior was taken care of, I was able to address the exterior side of the PVC pipe:

heat pump lines before tape after duct seal
Exterior view of the PVC pipe with heat pump refrigerant lines exiting the structure. Air sealed with a Roflex gasket and duct seal inside the pipe.

Again, note that the PVC pipe is extended out in preparation for the layers of exterior insulation, furring strips, and siding:

heat pump lines leaving house - sealed
Same area after completing the air sealing with Tescon Vana tape.

And here’s a view of the same area after the siding was installed (I’ll go into the many details regarding the installation of the exterior insulation, furring strips, and siding in a future post):

Heat pump lines w: duct seal and siding
Air sealing for the refrigerant lines complete after the siding is installed.

Additional areas where the duct seal proved to be invaluable:

close up exterior outlet box w: duct seal
Exterior electrical boxes for lights and outlets.

Conduit for the water meter in the basement (only the interior is shown below, but the conduit was air sealed with duct seal on the exterior end as well):

And here’s the same conduit for the water meter as it leaves the house on the first floor:

conduit for water meter sealed w: tape:gasket
Conduit for the water meter, air sealed on both sides of the Zip with the Roflex/Tescon Vana gasket.

I also had to address the disconnect boxes for our solar array and our heat pump. For instance, here’s our solar disconnect box when it’s open:

solar disconnect before removing

And here it is after removing the pull out switch, revealing an air leak:

solar disconnect before duct seal

Close-up of the conduit:

close up solar disconnect before duct seal

An even closer look:

close up penetration in solar box before duct seal

And here it is after being air sealed with the duct seal:

close up solar box after duct seal

I did the same air sealing for the Mitsubishi heat pump disconnect box:

heat pump box before removing

Close-up of the conduit sealed with the duct seal:

close up penetration in heat pump box w: duct seal

During my initial blower door test (more on that later), some air movement around the main panel in the basement was detected, so when the electrician came back we added duct seal to the main pipe entering the house (it had already been sealed from the exterior side with duct seal):

main panel - interior - duct seal
Close-up view of the main panel from the interior where lines first enter the structure.

Besides the penetrations in the Zip sheathing, there were other penetrations through the Intello (our air barrier on the ceiling) that had to be addressed as well. These areas were air sealed with the same set of products as the Zip.

For example, in addition to the conduit for solar through the Intello, we also had to air seal conduit for electric service to the attic (for a light and switch in the attic), in addition to the the penetrations for radon and plumbing waste vents, some of which are shown below:

plumbing vent thru Intello gasket:t. vana
Plumbing waste vent going into the attic.

Another view of this vent pipe after air sealing, this time from below:

sealed plumbing vent from below

Here is one of the vents that our first, incompetent plumber installed too close to one of the 2×6’s used to establish our service core:

plumbing vent installed too close to 2x6
Installed this close to framing makes air sealing the vent needlessly complicated and frustrating.

Here’s the same area after applying the Tescon Vana tape:

plumbing vent too close to 2x6 sealed w: tape

Below is another vent pipe incorrectly installed too close to a 2×6. This one was even more challenging to air seal properly. After the gasket and Tescon Vana, I added the green HF sealant as insurance against air leaks, both for now and in the future.

vent too close w: sealant too

We also had to air seal the penetrations for our Zehnder Comfo-Air 350 ERV ventilation unit. I’ll go into the details of the actual installation later, but here are some photos of the penetrations through the Zip sheathing and how we addressed making them air tight:

ext - comfo pipe going thru zip into basement
First section of Comfo pipe going through the Zip sheathing.
Zehnder tube exiting w: gasket
The gray Zehnder Comfo pipe (for supply air stream) exiting the structure with a Roflex gasket.
Zehnder pipe sealed w: gasket and tape
Closer view of the Comfo pipe air sealed with a gasket and Tescon Vana tape.
close up Zehnder Comfo Pipe w: gasket and t. vana
An even closer view of this same area where pipe meets gasket and tape.

We followed the same process — Roflex gasket and Tescon Vana tape — for the exterior side of the Zehnder Comfo pipe:

ext Zehnder gasket : t. vana
Zehnder Comfo pipe installed, air sealed, and ready for commissioning.

And here’s a picture of both supply and exhaust pipes for the Zehnder:

Zehnder exhaust and supply pipes ext fully sealed
Supply pipe in the background, exhaust in the foreground. The garbage bags keep out weather and animals until after the siding is up and the permanent covers can be installed.

During my initial blower door test some air movement around the sump pit was detected.

sump pit air sealed
Sump pit lid sealed with duct seal, Roflex gasket with Tescon Vana, and the seam between the pit and lid sealed with Prosoco Air Dam.

The sump pump discharge pipe also needed to be air sealed on both sides of the Zip:

sump discharge pipe w: gasket and joint and seam
Sump discharge pipe sealed first with Prosoco Joint and Seam, then a Roflex gasket, before applying Tescon Vana tape around the gasket.

Some air movement around the ejector pit was also detected, so I used duct seal to try and block it.

ejector pit air sealed with duct seal
Ejector pit air sealed with duct seal.

For low voltage — in our case, a cable TV/Internet connection — we found a utility box at Lowe’s (also available at Home Depot and Amazon), and combined it with conduit to transition from the exterior to the interior. The diameter of the conduit is large enough to allow wires for other utilities/services to pass through as well, if necessary, in the future.

cable box
Cable box installed after the siding went up.

An engineer from Comcast-Xfinity visited the site back in the summer, and he gave me the go-ahead for using this box/conduit set-up:

close up exterior of closed cable box
Closer view of the cable box.
cable box ext without cover
The cable wire exiting the house through the conduit, which is air sealed with duct seal.
cable wire int. basement
Cable wire on the interior of the house exiting through the Roxul insulation and Zip sheathing via the conduit and then air sealed from the interior with duct seal.

Even the wire for the doorbell was sealed with a gasket and tape:

doorbell gasket and tape
When the weather warmed up I was able to experiment with the Prosoco R-Guard series of products (note the 3/4″ plywood door buck treated with Joint and Seam and Fast Flash). I’ll go into that more when I discuss prepping for the windows and doors later.
close up of doorbell gasket
A closer view of the doorbell gasket.

Air sealing the penetrations was challenging at times, but also a lot of fun — always keeping in mind the goal of meeting the Passive House standard of 0.6 ACH@50 for our blower door test.

Convinced of the connection between air tightness and the durability of a structure — not to mention the impact air tightness has on heating and cooling loads (i.e. monthly utility bills) —I wanted to see just how air tight I could get the house.

Hopefully this inventory of penetrations will prove helpful to someone in the planning stages of their own “air tight” build. It always helps seeing how other people do things — in particular, the strategies they employ and the specific products they use.

Seeing these real world examples of air sealing around the many penetrations in a structure will hopefully give others the confidence to come up with their own plan of attack for building an airtight structure.

Roof Details (Air Sealing #3)

4

Top of Wall and Roof Connection

Once the wall assembly details were figured out, and our ceiling set-up detailed, the transition between the two became the next challenge. In other words, how to carry the air barrier over the top of our exterior walls.

I found this helpful article by Chris Corson from The Journal of Light Construction:

An Affordable-Passive-House  (pdf)

Using a waterproof peel-and-stick membrane to wrap over the top of the wall (going from exterior sheathing — in our case 7/16″ Zip sheathing — to interior side of the top plates) seemed like the easiest way to maintain a continuous air barrier at the wall-to-roof junction. The membrane would also have a nice air sealing gasket effect after the trusses were set in place.

I also found this excellent Hammer and Hand video on YouTube (one of their many helpful videos):

Wall-to-Roof Air Barrier

Also, by being able to carry the Zip sheathing up above the top plate of the wall, hugging the bottom of the trusses, meant our 4″ of Roxul Comfortboard 80 over the Zip sheathing would rise above the top of our walls, so that thermally we would be protected going from the exterior walls to the attic, which will be filled with 24″ of blown-in cellulose — making our thermal envelope continuous for the whole house: under the basement slab – exterior of foundation – exterior walls – attic (except for one small gap at the footing-slab-foundation wall connection, which I talk about in a separate post: Foundation Details).

A high R-value wall meets up with a high R-value attic, with no thermal bridging, making our thermal layers continuous. When this is combined with an equally air-tight structure, conditioned air cannot easily escape — resulting in a significantly lower energy demand for heating and cooling (and therefore lower utility bills), and added comfort for the occupants.

Here’s a nice illustration from Fine Homebuilding magazine showing a similar set-up:

021221072-2_med.jpg
Illustration from Fine Homebuilding magazine.

I tried using rolls of conventional peel-and-stick window flashing membrane, purchased from Home Depot and Mendards, but they performed poorly, even in unseasonably warm temperatures for February in Chicago.

I then switched to Grace Ice and Water Shield, normally used as a roofing underlayment along the first 3-6′ of roof edge.

grace-ice-water-shield
Purchased this box at Home Depot.

Since it came on a long roll about 4′ wide, my wife and I cut it down to a series of strips that could more easily be applied to the wall-top plate connection.

While the sun was out, the Grace membrane worked fairly well, especially when pressure was applied with a J-Roller.

grace-vycor-in-the-sun-ii
Grace Ice and Water Shield applied to the top of our wall — covering the Zip sheathing/top plate connection.

Unfortunately, the sun and warmer temperatures didn’t stick around long enough for me to finish.

sealing top of wall w: Grace Vycor in sun
Using a J-Roller to get the Grace Ice and Water Shield to stick better.
grace-vycor-in-the-sun
This Simpsons sky didn’t last long. In a matter of hours it was back to rainy, gray, and cold — typical Chicago winter weather for February.

When the weather went gray and cold again, we started to use a heat gun to warm up the Grace membrane, which had turned stiff and nearly useless in the cold.

wagner-heat-gun
Wagner heat gun for warming up the Grace membrane.

After wasting a lot of time and effort trying to pre-heat the Grace membrane before installing it, I finally relented and switched to the much more expensive (but also much more effective) Extoseal Encors tape from Pro Clima. Where the Grace membrane lost virtually all of its stickiness, the Extoseal Encors stuck easily and consistently, with the J-Roller just helping it to lay flatter and more securely.

extoseal-encors-as-gasket
Pro Clima’s Extoseal Encors available from 475 HPBS.

It was a case of trying to be penny wise but ending up pound foolish. Looking back, I would gladly pay an extra $300 in materials to have those hours of frustration back (including the time it took to run to the store and buy the heat gun, which turned out to be ineffective anyway).

installing Extoseal Encors on top of wall cloudy
Finishing up the top of the wall.

After finishing sealing the Zip sheathing-top plate connection on all the outside perimeter walls over the weekend, it was time for the trusses to be installed.

Trusses

Zach asked me to stand by the front door rough opening and give the crane operator hand signals. It was a fun way to watch the roof take shape.

first-truss-swinging-into-place
First truss swinging into place.
trusses-going-in-from-inside
Sammy, Zach, and Billy (out of view to the right), landing and setting the trusses.

Once the trusses neared the front door, Zach could signal the crane operator himself, so I was able to get some shots from just outside the construction fence.

starting-garage-trusses
Sammy, Zach, and Billy landing trusses on the garage.
long-view-of-crane-and-house-east-side
Setting the trusses on the garage. The basic silhouette of the house starts to come to life.

Once the trusses were on, and the guys had a chance to install the final top row of Zip sheathing (up to the bottom of the trusses on the exterior side of the wall), I could move inside to seal all the connections from the interior.

Top of Wall (Interior)

Because of the cold, the Grace membrane was beginning to lift at the edges in certain spots, so just to make sure it had a nice long-term seal, I went around the perimeter of the house and used a layer of Tescon Vana (3″ wide) tape to seal the edge of the Grace membrane.

sealed top plate from interior
Trusses sitting on Grace and Extoseal Encors (other sections of top plate), with the final, top row of Zip sheathing sealed to the trusses with HF Sealant.

The picture below shows all the connections involved: top of Zip sheathing meeting the roof trusses and the top plate of the outside wall:

sealed top of wall from inside
HF Sealant helps to air seal the Zip-truss and Zip-Grace/Extoseal Encors connections.
view of top row of Zip sheathing 1
Looking up at the top row of Zip sheathing attached to the outside edge of the raised heel trusses.

Shingles

We had to wait for shingles for quite some time. First we had to fire our GC’s, and then I had to find a roofer and a plumber (to make penetrations through the roof before the shingles went on). But before the plumber could even start, I had to get the Intello installed on the ceiling. And even before that, I had to figure out the insulation baffles, which I’ll talk about in a separate post.

It took awhile to find a roofer since they would have to make three separate trips for a relatively small job. The first trip was just to set down the Grace Ice and Water Shield at the edges of the roof, along with a synthetic roof underlayment (the consensus was that typical roofing felt wouldn’t hold up to long term exposure). As it turned out, it took weeks before the plumbers made their penetrations through the roof sheathing (literally the day the roofers showed up — a long, horrible story in and of itself that I’ll save for later).

synthetic underlayment at roof peak
Synthetic underlayment covering the ridge line until the shingles and a ridge vent can be installed.

The second trip out was to install the shingles on the roof of the house, while the third trip to install shingles on the garage roof could only happen after the Roxul on the exterior of our Zip sheathing was installed (in order to make a proper sealed connection between the wall of the house and the garage roof).

There weren’t many roofers willing to work with our unique Passive House sequencing, but our roofer was kind enough to take it on.

Grace ice and water shield rolling up after wind
Grace Ice and Water Shield rolling up on itself after the wind got ahold of it.

Unfortunately, the day after the guys installed the Grace membrane and the synthetic underlayment, we had a cold, blustery day. Once the wind grabbed the Grace membrane, the membrane rolled up on itself, turning it into a real mess.

Because of our recent past bad experiences with general contractors, I just assumed I was on my own, so I spent a couple of hours putting down new layers of the Grace membrane. When Peterson roofing found out, they were shocked I did it myself, and assured me I could’ve called them and they would’ve come back out. We were so used to people not following through, that low expectations meant it didn’t even occur to me to call them.

We initially were going to use Certainteed’s Landmark TL shingle, which mimics a cedar shake shingle profile, but Armando from Midwest Roofing Supply in Schaumburg, Illinois was kind enough to take the time to walk me through the options available, and explained that because our roofline isn’t steep, only the neighbors from their second story windows would get to appreciate the effect. He recommended we save some money, while not giving up on quality or durability, and go with the Landmark Pro product.

shingles being installed w: vents
Shingles going down on the roof of the house.

The shingles went on quickly since we have a relatively small and simple roof. In addition to the aesthetic leap the shingles made on the appearance of the structure, it also meant I didn’t have to go around cleaning up the subfloor every time it rained.

Although the synthetic underlayment worked pretty well at keeping the rain out, if there was significant wind combined with rain, the water easily found its way under the underlayment where it could then drip and fall on the subflooring below — pretty depressing showing up to the job site after a hard rain knowing I was going to spend the first hour just cleaning up and looking for leaks.

roofers shingling south side
Seeing this felt like a tremendous amount of progress was being made. It also meant an end to our roof leaks on the interior.
shingle installation progressing
Shingles going on quickly. Only two penetrations through the roof — main waste stack and radon.

After they cut the opening for the ridge vent, but before it was installed, I managed to get this shot from inside:

attic just before ridge vent installed
Attic as cathedral.