kimchi & kraut

Passive House + Net Zero Energy + Permaculture Yard

Tag Archives: midwest passive house

Our Energy Bills

4

The Logic Behind the Effort and Added Cost of Passive House

Passive House, as a building strategy, requires meticulous air sealing, along with ample amounts of insulation, carefully placed to eliminate or reduce the impact of thermal bridges through the building envelope. Once the air barrier of the building has been established, it requires mechanical ventilation to meet IAQ needs, along with high performance windows and doors to avoid undermining all of the air sealing and insulation.

Air sealing, water proofing, and thermal elements come together around a high performance window.

All of these elements together, if successfully managed and implemented, should achieve a building that requires significantly less energy to operate and maintain at comfortable temperatures than any conventionally built structure of similar size and shape.

The Visitor enjoying some early morning solar heat gain through our kitchen window.

With a ‘conservation first’ approach (i.e. extensive air sealing and insulation), the goal is to reduce total heating and cooling demand as much as reasonably possible (while maximizing occupant comfort), with the possibility of adding renewables like solar or wind as mostly an afterthought to further reduce, or eliminate entirely, the remaining energy demand of the structure. It also typically means going all electric, so in our case it meant no natural gas (the normal fuel source in our area for a furnace and a hot water tank).

So far, our 11 panel 2.9 kW system has been averaging between 3,500-4,000 kWh of solar production per year.

A Passive House structure, by design, should use significantly less energy than any conventionally built counterpart of similar size and shape. This includes lighting (normally assumes only LED fixtures will be used) and other plug-in loads (e.g. Energy Star appliances), as well as hot water (typically a heat pump hot water tank, or a newer product like Sanden or Chiltrix).

Unfortunately, these loads are relatively ‘baked-in’, even for an existing, conventionally built home. For instance, a hundred year old home could switch all of their light fixtures to LED bulbs, replace old appliances with new Energy Star rated models, and change out a gas-fired or a conventional electric hot water tank to a high-efficiency heat pump model. In effect, they’d have pretty much the same reduction in energy use as a brand new certified Passive House of similar size and layout for these particular sources of energy demand. As a result, the real opportunities for driving down energy use in a Passive House are in the heating and cooling loads (mainly due, of course, to the extensive air sealing and insulation levels).

On most days the 15,000 Btu head in our kitchen and family room handles all of the heating and AC needs for our entire house. We have two additional heads in our bedrooms (9k and 6k Btu respectively), but they’re rarely used apart from the coldest and hottest days of the year.

Although there has been some moving of the goal posts as the Passive House programs have evolved over time, they remain challenging targets to meet.

Here are the current PHI requirements according to Passipedia: Passive House Checklist

In the case of PHIUS, the requirements have gone through several iterations, for instance, PHIUS+ 2015, PHIUS+ 2018, and most recently a fairly dramatic change to a prescriptive track to seek certification with far less onerous levels of paperwork and data collection required.

Overall, regardless of which model is pursued, PHI or PHIUS, the intent is to dramatically reduce the overall energy use of buildings by emphasizing the importance of air sealing, insulating to levels that exceed current code requirements (in most cases), along with quantifying things like thermal bridges, heating and cooling demand, and peak heating and cooling demand. The issue of energy demand or energy use is further complicated by the distinction made between Primary/Source and Site Energy.

Additionally, there’s been a growing consensus regarding the need to incorporate renewables in these building strategies, both in terms of financial feasibility and in terms of further reducing (or even canceling out altogether) net energy demand. And while it’s true that Net Zero is fairly straightforward to achieve (assuming needlessly large PV arrays are not utilized as a short-cut), it does require a commitment to meticulous air sealing and quantities of insulation that, along with the in-depth energy modeling, unavoidably add cost to any construction budget.

Zehnder ERV, Rheem HPHW tank, radon pipe with fan, and battery back-up sump pump. Elements that support proper moisture management, IAQ, and HVAC needs.

The opportunity for significant energy reduction also correlates with the size of the project. Because of form factor ratios, the larger the project (assuming a compact form is mostly maintained) the more energy a structure stands to conserve. This is why larger institutional, multi-family projects, or corporate-sized projects stand to be the biggest winners when it comes to the purported benefits associated with Passive House energy conservation.

Outdoor heat pump compressor after the snow, but before the worst of the 2019 Polar Vortex.

If executed properly, low energy demand will mean considerable financial savings. These savings are cumulative, year after year, rather than just a one-off initial price break, with the added potential to increase should energy costs go up.

In addition, there is the potential for less upfront expenditures for HVAC equipment (less heating and AC demand — at least in theory — means smaller and more cost-effective equipment required). In our case, in climate zone 5, where we get cold, dry winters and hot, humid summers, this didn’t prove to be the case. Combining the cost of our heat pump and ERV reflected roughly what we would’ve paid had we built a conventional home with a high efficiency gas furnace with a humidifier attached (fairly typical system in our area). Either way, it would constitute roughly a $20,000 expenditure for a house under 2,000 square feet. The level of indoor comfort, however, should be vastly different between a conventional and a Passive House build.

Even though occupant behavior can derail some of these projected performance outcomes, assuming that homeowners or tenants are reasonably educated on the best way to enjoy and benefit from the Passive House details, especially the HVAC systems (normally this means commissioning units and then mostly leaving them alone in terms of settings), this should not be a stumbling block for most builds.

While all of this becomes more challenging with a smaller, more compact build like our 1,500 square foot single-family home, the possibility of significantly lowering energy demand is no less real, along with the cost savings. Not to mention the level of occupant comfort, which I personally feel is the main selling point of the Passive House building principles.

Some Background Information on Our Home

A quick summary of our build would include our blower door score of 0.2 ACH@50 (106 cfm@50), along with the following R-values for the structure:

R-16 Below the basement slab

R-20 Exterior of the basement foundation

R-40 Exterior walls

R-80 Attic

In 2019, our first full year of occupancy, with three of us (my wife, daughter, and myself) we had a total of just over 11,000 kWh of energy use. This included lighting, all other plug-in electricity demands (appliances, TV, computers, charging cell phones etc.), along with our HPHW tank and all of our heating and AC needs. It also included countless hours of power tool usage as I finished up interior trim, doors, along with some shelving and storage projects after we moved in. Record low temps during a Polar Vortex event in late January and into early February added to the total as well.

For 2020, a substantial increase in overall energy use might have been the expectation after the outbreak of COVID-19. Yet even after subsequent stay-at-home guidelines that began for us in March, we actually ended up at 10,446 kWh, a slightly lower annual number compared to the previous year. This lower total happened even with all three of us being home most of the time, with no breaks even for vacation time, outdoor activities that require some travel, or normal visits to family out of town.

If there’s a payoff in pursuing Passive House, it has to be in the combination of lower energy costs and increased occupant comfort when compared to a similar, conventionally built home or structure.

This lower number was in keeping with our usage during our first nine months (April-December, 2018). If the Polar Vortex was an anomaly (everyone hopes that it was), then most years going forward should be around 9,500-10,500 kWh for total annual demand. In part we think going over 11,000 kWH our first full year reflects just how significant a colder than normal winter can be on overall energy use in a Passive House, not to mention heating demand more generally (whether it’s a Passive House or not).

Moreover, for a family of three and a structure of this size with similar performance specs, it seems to suggest that our 3-4,000 kWh of annual usage per person is mostly ‘baked-in’. Meaning, in terms of occupant behavior, there’s not much we could do to further lower these numbers. Perhaps we could take fewer showers, cook less at home (stove and dishwasher), do less laundry, only ‘live’ from dawn to dusk (to avoid using artificial lighting at night), not do any woodworking or other DIY projects (use power tools off site?), and heat the home to only 60º F in the winter and cool to only 85º F in the summer. Obviously, these would be rather extreme measures to chase after the last final few kWh of energy use and, arguably, it wouldn’t be particularly meaningful apart from bragging rights should we end up with a lower annual total.

After all, it’s fair to ask what’s the point of the air sealing, insulation, and triple pane Passive House windows and doors, if it doesn’t produce a much more comfortable day-to-day living experience for those living inside the home or building? If simply chasing energy use were the main objective, reducing it no matter the consequences, then removing all the windows and doors and replacing them with continuous R-40 walls would be a good place to start, but hardly worth considering for obvious reasons. If there’s a payoff in pursuing Passive House, it has to be in the combination of lower energy costs and increased occupant comfort when compared to a similar, conventionally built home or structure.

In terms of unexpected surprises, really the only unanticipated energy use was the need for dehumidification on the hottest and most humid summer days of the year.

After our first summer in 2018, when part of the excess humidity was likely due to new construction moisture present inside the structure, we’ve been averaging about 30-40 days a summer, including a few random days in spring and fall, when the dehumidifiers are running intermittently. We set the units to 50% relative humidity, but normally they shut off around 55% based on gauges placed around the house. We try to keep the house under 60% RH. The risk for mold increases above 60%, but it’s mainly at that point when humidity levels make us feel noticeably uncomfortable.

Also, we didn’t think about the energy use associated with power tools for woodworking and arts and crafts projects. Without tracking it, we can only guess that it represents a few hundred kWh a year, rather than something in the thousands. We’ve been doing plenty of projects around the house our first three years, but still far less than what a full-time woodworking company would require. Even so, along with the potential for a EV charger, it’s something to think about when designing a new home or retrofitting an older one, especially if renewables are part of the equation and you’re trying to establish likely annual demand.

Actual Energy Use: Demand and Costs

The breakdown is as follows:

Based on our first 2.5 years in the house, we can expect 10-11,000 kWh of total energy use per year. Again, for some context, this is for a family of three, in a 1,500 square foot single story home that has a full basement.

In our first full year, 2019, we exceeded 11,000 kWh mainly due to the Polar Vortex. Compared to our first winter, along with numbers for this current season, it looks like the Polar Vortex added nearly 1,000 kWh of demand above a more typical January – March time period.

Over the course of our first 2.5 years (our first year was April-December), the numbers have been surprisingly consistent across seasons and month-to-month, regardless of our level of activity in the home (e.g. guests staying over, vacations away from the home, power tool use, etc.).

For instance, even in our first June, back in 2018, when the house was still drying out from new construction related moisture, and we felt compelled to start using two dehumidifiers to control excessive humidity (one in the kitchen and one in the basement), total energy use for the month was 616 kWh.

The following June, in 2019, we ended up with an even higher number, at 786 kWh of demand.

For June of this year, even with stay-at-home restrictions for COVID-19 in place, so a reasonable expectation might be for still yet higher demand, we actually ended up at a lower 605 kWh of use.

On a side note, it’s probably reasonable to assume COVID-19 had some impact on overall energy use for 2020, but after going through the numbers, it just seems unlikely that it contributed more than 500-1,000 kWh to our annual usage. We should have a better idea of its full impact once winter is over.

Presumably, without a granular study of day-to-day conditions, including day and night temperatures, along with relative humidity data, not to mention minor fluctuations in how we used the AC or how much laundry we were doing over these same three periods, it’s hard to explain this deviation with any level of certainty. Suffice it to say, we can expect June usage to normally be in the 600-800 kWh range. Obviously, a June in the future that experiences a heat wave like the one Chicago experienced in 1995 would likely drive the final number well over 800 kWh, but hopefully that remains a singular event rather than a more normal June.

In other words, even in a year where the weather remains milder than normal for a full 12 months, and we’re all exceedingly busy and rarely at home, our total energy use for the year, at best, will likely still end up in the 9,000-10,000 kWh range. And even if there was just one person living here, it’s hard to imagine they could keep total energy usage much below 4-5,000 kWh on an annual basis since so much of the demand is ‘baked-in’, as previously noted above.

Here is the monthly breakdown of energy use for the first full year we were in the home for 2019:

January: 1,738 kWh (includes 2019 Polar Vortex; following January was only 1,374 kWh)

February: 1483 kWh (the following year was 1,237 kWh)

March: 837 kWh (following year was 561 kWh — clearly a bitterly cold winter)

April: 681 kWh

May: 473 kWh

June: 786 kWh

July: 612 kWh

August: 608 kWh

September: 630 kWh

October: 812 kWh

November: 1,166 kWh

December: 1,237 kWh

Total energy use for 2019 was 11,063 kWh.

In this same period, our solar panels produced 3,863 kWh, so net demand for the year was 7,200 kWh (this requires some math using the billing statements from our utility company and the Enphase Enlighten solar app).

Our monthly bills for electricity in 2019 totaled: $1,075.89.

Because of our SRECs, which for us totaled $848 for the year (paid via quarterly checks), our net energy costs for 2019 were $227.89 (an average of $18.99 per month).

For comparison, numbers for 2020 were: 10,446 kWh of demand, while solar production for the same time period was 3,675 kWh, for a net energy demand of 6,771 kWh.

After SREC payments (again, totaling $848 for the year), our net total cost for 2020 was $189.36 (an average of $15.78 per month).

The SREC payments (these are based on a 5 year contract) reduced our annual cost by $848 each year, with a net average cost for our first two years of just $208.63 per year for all of our energy needs (a roughly $17.39 per month average).

Without any solar panels or SRECs, our electric bill would be roughly just under $1,500 per year based on current rates. By way of comparison, a new code-built home of the same size would likely pay more than twice this amount — an older home still more, assuming less air tightness and insulation, combined with a less efficient gas furnace for HVAC and domestic hot water.

It’s worth noting that as building codes tighten up their performance metrics, the difference in total energy demand between code-built and Passive House homes should continue to shrink. This assumes, however, that any number of ‘ifs’ are successfully overcome. For example, if air leakage is accurately measured (is there enforcement should the structure fail?). If a proper Manual J has been completed. If HVAC ducts are sized, installed, air sealed, and insulated properly. If insulation has been properly installed in appropriate quantities throughout the exterior walls and roof. If thermal bridges are avoided. If moisture (bulk and water vapor) is appropriately addressed and managed. This is a lot to get right, and it’s easy to get any number of things wrong, even with inspections and third party verification.

As pointed out earlier, since we’ve moved in we haven’t aggressively pursued trying to lower our energy demand. Instead, our approach has been to live ‘normally’, enjoying the benefits of the air sealing, insulation, and our HVAC set-up. We set and mostly forget our heat pump at 70º F in winter, 75º F in summer, in order to try and better understand ‘real world’ energy demand in a tight, well insulated and appropriately ventilated home of our size.

Hopefully some of this information can benefit others in the planning stages of their own Passive House, or Pretty Good House project. Moreover, in addition to WUFI analysis and PHPP, BEopt is another modeling option for figuring out energy demand and cost-effective design elements for a structure (new or old). The new calculator from PHIUS would also be a good place to start: PHIUS+ 2021

For anyone who wants an easy, initial test of their current home’s energy efficiency (EUI), a calculator like this one may be helpful: Energy Smart

Numbers for Heating and Cooling

In spring and fall when there’s less demand for heating or AC, our baseline monthly energy usage is below 500 kWh (this has been fairly consistent over the course of our 2.5 years in the home, even during COVID-19 when the three of us were home most of the time).

If this low demand could be maintained for much of the year, as it is in milder regions of the country like in parts of California, our annual usage could be cut by more than half (it wouldn’t require R-40 walls or R-80 attics to achieve either). Moreover, in these more temperate regions of the country with reduced insulation needs, and therefore less demand on HVAC systems, ‘green’ building programs like Passive House and Net Zero become even more attractive since they’re far more cost effective and easier to achieve.

In our case, summer months typically run about 600-800 kWh of actual usage, dependent on the number of days above 82º F when we typically find that we need to turn on the AC. Even on these days we will turn it off if there’s a sufficient drop in outdoor temps overnight, which allows us to open the windows (dependent on outdoor humidity or rain).

It might be worth noting that even though we thought we’d regularly open our windows whenever the weather was remotely nice, this hasn’t turned out to be the case. Between having to monitor indoor humidity levels, and the ability of our ERV to deliver continuous filtered fresh air (it’s shocking how quickly our fresh air supply filter turns black — within a month or two at the most), apart from the few days a year when the weather is perfect for opening windows, they mostly just stay shut. Much like Jim Gaffigan’s quip on seasons here in the Midwest, “Spring, that’s a fun day,” because the weather tends to be so mercurial there just aren’t that many days or nights when we feel comfortable leaving the windows open for extended periods of time.

On the plus side, it’s not uncommon for us to wait until there are 2-3 successive days where temperatures rise above 82º F before we feel the need to turn on the AC. In other words, there is some truth to the idea that Passive House buildings take some time to heat up or cool down based on outdoor conditions, although this can be quickly undermined by an ERV/HRV that’s set on high or in boost mode for long periods of the day (lots of cooking or showering, particularly relevant in the case of larger families, would make this a necessity) .

“Heating and cooling energy – that which is most reflective of the efforts of the design and construction process – is a small percentage of the total energy usage. As Andy Shapiro says, there is no such thing as a net zero house, only net zero families. Occupant choice matters hugely.”

—Marc Rosenbaum‘s report on South Mountain Company’s Eliakim Net Zero Energy Project

During the heart of winter, our total energy demand is in the range of 1,000-1,500 kWh per month. Even in January of 2019, with a Polar Vortex event, our bill still managed to stay below 2,000 kWh for the month. During this same week, however, we saw minimal benefit from our solar panels since they were covered by several inches of snow during the sunniest (and coldest) parts of the billing period.

These elevated kWh numbers during winter reflect just how much harder our Mitsubishi heat pump system has to work in order to maintain indoor comfort because of the Delta T between outdoor and indoor temperatures. And we can hear the difference: while in summer the system is virtually silent, in winter, especially as temps head towards zero, we can hear the compressor outdoors working to keep up. Compare this to summers: 75º F indoors vs. 95-100º F outside on the hottest days of the year, even though it’s significantly cooler for most of the summer, thus helping to explain the lower overall energy demand for AC usage in comparison to heating demand.

Cooling, unlike the demand for heating, is relatively comparable to what it would be in a conventional new build. In summer, the Passive House ‘thermos-like’ structure is mostly a hindrance rather than a benefit to keeping the interior comfortable. All the ‘free’ sources of heat in winter, e.g. south-facing windows on sunny days, body heat from the occupants, heat given off by computers, TVs, appliances, and even LED lights or our heat pump dryer, either thankfully don’t exist (in the case of south-facing glass because of sufficient overhangs) or they actively contribute (however small in some cases) to the overall cooling load.

In addition, because cooling loads are relatively low, and the efficiency of the mini-split heat pump is so high, even as the multiple indoor heads have no issue maintaining comfortable temperatures (we rarely notice the system — wall units or outdoor compressor — running in summer), it leaves us with a latent load that we need to address with two stand-alone dehumidifiers, indirectly adding to the overall cooling load.

So of our roughly 10-11,000 kWh per year of total demand, without an actual energy use monitor like TED on our main panel to establish exact numbers (a review of similar product options: here), it looks like just over 3,000 kWh is used for heating, with another 800-1,000 kWh used for cooling needs (at least in a typical year). In years where there’s a significant Polar Vortex event, or should a summer in the future experience an extended heat wave, then our numbers for heating and cooling are likely to hit 5-6,000 kWh of demand. With climate change, these numbers are invariably going to fluctuate or even grow depending on just how severe weather patterns become over the ensuing years and even decades.

Notes on Designing a Heat Pump System for Passive House

An issue worth considering, especially for those in the design stages of a build, is the added efficiency of a 1:1 set-up for heat pumps, meaning one outdoor compressor for each distribution head indoors (or air handler). There appears to be a growing consensus that this layout will offer added efficiency because of improved modulation over what has been a more typical set-up, like ours, which is a multi-zone system that has multiple distribution heads on a single compressor. It’s hard to imagine, at least in our case, that this impact could be more than a few hundred kWh per year, but worth exploring when having someone do a Manual J and S.

Additionally, we haven’t experienced any issues with the distribution heads in the two bedrooms (9k & 6k Btu’s respectively), either for heating or cooling, although concerns about the effectiveness of these undersized units in smaller bedrooms often comes up in discussions on how best to design and layout a heat pump system on Green Building Advisor.

When designing our system, I don’t remember this issue of 1:1 vs. multi-zone heat pump set-ups being discussed in any of the information I was able to hunt down, either in Passive House related books, or even online resources. I also didn’t come across discussion of the need for active, separate dehumidification while designing our build in 2016. These are just two examples demonstrating that Passive House is still actively evolving as a ‘green’ building program (potential overheating in winter and shoulder seasons would be a third example).

A cautionary tale for designers, as well as building owners, to guard against hubris as the construction drawings develop or when the details are finally executed on a construction job site. Other issues may arise with Passive House builds in the coming years, so it’s worth considering potential unintended consequences before finalizing details. Today’s solution may be someone’s costly headache tomorrow.

Additional Solar Panels to Achieve Net Zero?

Based on what we’ve been paying for energy in these first 2.5 years, we don’t feel compelled to add more solar panels at this time. Should the SREC’s dramatically fall in value with a new contract, or disappear altogether, it might encourage us, at that point, to purchase more panels for the roof. But even so, at less than $90 per month, even without the SREC’s, it makes our energy bills a relatively painless expenditure (roughly equivalent to one nice restaurant dinner for the three of us, or still less than what we pay on a monthly basis for things like coffee, breakfast cereals, and milk). Put another way, averaging around 3,500 kWh per person of demand, whether with or without the solar panels and our SRECs payments, our monthly energy bill is typically cheaper than a single visit to the grocery store.

Because of the effort and money expended upfront for air sealing and insulation, all while trying to carefully manage window placement and HVAC layout successfully, we’ve managed to whittle our energy costs down to something highly affordable and resistant to significant cost increases. This should remain true, regardless of what’s happening in the market in terms of prices for natural gas, coal, or nuclear power (i.e. the major sources of power in our region, here in the Midwest). Worst case scenario, we add additional solar panels to get to Net Zero or even Net Positive in order to cancel out what remains of our monthly energy bill. This would require an additional 7-8,000 kWh of annual solar production, or roughly three times what our current system produces.

In our specific case as a household — averaging between 3,500-4,000 kWh of solar production per year (this amounts to nearly 40% of our annual demand), combined with SRECs — we nearly end up at Net Zero, at least in terms of total cash spent for energy (arguably the most important — maybe the only — metric that homeowners ultimately care about; whether it’s the total cost to build a new home, or in terms of the annual energy bill). As a result, there’s not much financial incentive to purchase additional solar panels to achieve absolute zero energy consumption (this is in site energy terms only). The fact that this all comes with a house that’s extremely comfortable and quiet to live in, regardless of season or room, makes our home only that much more valuable to us.

Passive House + Net Zero?

In addition to designing for Passive House, there is the question of Net Zero or even Net Positive buildings. While Passive House strategies eliminate a significant portion of overall demand by requiring a significant outlay of upfront funds for air sealing and insulation, once this pill has been swallowed, it’s normally cost-effective to incorporate renewable energy of some kind to cancel out the expense of the remaining energy bill.

A quick side note: An excellent resource, one that I found only as our build was coming to an end, is William Maclay’s book The New Net Zero. It contains a wealth of information, but, in particular, many specific construction details vividly illustrated. This is especially valuable for DIY builders, or even seasoned professionals, when evaluating all the possible elements of roof-wall-foundation assemblies.

Also worth noting, if this approach (Passive House + Net Zero) were adopted on a national level, including renovations, it would eliminate a large portion of aggregate energy demand, thus having a meaningful impact on greenhouse gas emissions and global climate change (up to 40% for construction and existing buildings).

Based on what we know at the moment, a combination of approaches — including Passive House building principles, Zero Carbon goals, and the use of renewables — could be the way out of the climate crisis over the long haul. In addition, if adopted as part of building codes, it could mean properly training the next generation of tradespeople (like European-style apprenticeship models, thereby also improving the build quality) while also being a tremendously effective jobs program.

Beyond Net Zero, or even Net Positive, in regards to energy demand, there is increasing awareness about carbon emissions more generally, and the variety of ways to radically reduce or sequester it, including the choice of building materials (for new construction or retrofit projects) or even how we decide to landscape our yards.

Passive House Cost Premium

Unfortunately, due to relatively inexpensive utility rates here in the Midwest, even though Passive House (or Pretty Good House) offers a significant reduction in energy costs if done well, when considered as a percentage of household income the numbers may appear much less impactful or motivating when faced with line items in a build budget for things like air sealing and levels of insulation that far exceed building code requirements.

In our case, the annual energy savings compared to something code-built would likely be in the $2-3,000 range. Fairly significant, but if the purchase price of the home is $500,000 – 1,000,000+ (fairly typical here in the Chicago suburbs for new construction) then even a $100,000 savings over the course of a 30 year mortgage may not convince someone to move beyond conventional construction practices (particularly if they have their heart set on a long list of high-end finishes and appliances). The upfront costs associated with meticulous air sealing and added levels of insulation — if not viewed as an investment in build quality — will likely appear frivolous to the average consumer.

“One of the issues we face here is the fact that energy is cheap, like most things in the Midwest. We don’t have the financial burden placed on us that the coasts do—real estate-wise and energy-wise. So there is not much enthusiasm around green building on a financial level; it’s almost always an ethical issue. The people who are interested want to do a good thing for the environment, as opposed to saving money on their utility bills. Another thing is that people are accustomed to discomfort—we have drastic and frequent temperature swings. It’s really humid in the summer and freezing in the winters, when drafty windows are just accepted. They are used [to] it, so it is hard to sell them on high-performance windows to be more comfortable; or taking measures to keep a basement from being wet—they just aren’t concerned about it. There’s a complacency that we fight against; there’s not enough financial gain to incentivize making upgrades.” — Travis Brungardt, GBA Q&A

Looking solely at upfront costs is likely to discourage most prospective homebuyers from pursuing Passive House (or even Pretty Good House in many cases), whereas looking at the cost of ownership, including the cost of monthly utilities, produces a more accurate comparison (note, however, this assumes the homeowner can stay put for at least the next twenty to thirty years).

A cost of ownership calculation should also acknowledge less maintenance costs year-to-year since, if the structure is detailed well, it should experience far fewer issues (none ideally), especially damage caused by bulk water intrusion, mold, or even air leakage. Granted, it may take a decade or more before this kind of damage is found in a conventional home, but when it is, it’s rarely (if ever) inexpensive to properly correct.

Hard Choices

As a culture, we have been in a similar place before. One quick example would be automotive engineering applied to car safety. In terms of perspective, if you get the balance between cost and safety wrong when evaluating value, then seat belts, air bags, and better designed bumpers might seem like misspent dollars.

“Nader argued that Detroit willfully neglected advances in auto safety, like roll bars and seat belts, to keep costs down… But using [seatbelts] was strictly voluntary. And many Americans didn’t want to.”

— Daniel Ackerman, Before Facemasks, Americans Went to War over Seat Belts

In a similar vein, the American consumer has been taught by the market, realtors, and builders to believe cost per square foot is the gold standard of value. As a consequence, little emphasis is placed on building science basics such as air tightness, proper moisture management, thermal performance, or indoor air quality. In layman’s terms, this means the average American home is leaky, parts of it have likely been damaged by bulk water or mold, and it’s uncomfortable in terms of indoor temperatures and humidity, all while delivering subpar air quality to its occupants.

In terms of quality construction and ‘green’ building (Passive House or not), the hard truth is there really is no free lunch (not even renting: rentcafe). Quality, of any kind — finishes, proper moisture management, occupant comfort, even reduced energy bills — has its price, but only those who recognize its value will be willing to pay for it.

Regardless, as homeowners we either pay upfront for the air sealing and insulation, along with high performance HVAC for better IAQ, or we pay monthly (and perpetually) in the form of higher energy bills (this normally comes with less occupant comfort) and far inferior IAQ. Either way, the money is going to be spent, it’s just a question of when (upfront vs. long term month-to-month) and for what (air sealing and insulation vs. mediocre systems and underwhelming outcomes that require costly maintenance over time).

As with car safety in the past, depending on one’s point of view, the answer to these kinds of construction and homeownership options are either obvious or nonsensical. Nevertheless, regardless of the path taken — conventional construction or some version of high performance — no one’s wallet will remain closed for long.

Passive Solar: The Beauty of Light

4

Does Passive Solar Design Still Make Sense?

Our ‘green’ building adventure began in 2013 when I came across various Passive House and high performance projects in Prefabulous + Almost Off the Grid by Sheri Koones. The red house featured on the cover and built by GO Logic, in particular, seemed like a striking departure from conventional homebuilding as practiced in the US.

In its overall shape it echoed an earlier project that I only became aware of later, the Smith House in Illinois by Katrin Klingenberg.

Arguably, in both cases, these homes have too much glass on their south elevations, both in terms of potential overheating of the interior and in purely aesthetic visual terms. Nevertheless, using south-facing glazing to bring in the sun during the winter months while getting some Btu’s of free heat made a lot of sense to us, especially in a heating dominated climate like ours here in the Chicago area.

By the time construction began, we had settled on what seemed like a significant amount of windows and a kitchen door for our south elevation. We felt the layout would be an appropriate amount both in terms of passive solar heating and aesthetics, in addition to daylighting needs.

Moreover, by addressing the main weaknesses of the original Passive Solar movement of the 1970’s, namely the lack of air tightness and sufficient levels of insulation, we hoped that we could strike a balance between enjoying the seasonal movement of the sun in and out of our home while mostly eliminating the risk of overheating, even during shoulder seasons (spring and fall).

Since our build, however, there appears to be growing concern about just how effective this design strategy really is for Passive Houses or high-performance homes more generally. In effect, are the potential savings on a heating bill really worth the risk of temporarily overheating interior spaces?

Joe Lstiburek, of Building Science Corporation fame, puts it bluntly when quoted in a GBA article regarding the use of high SHGC glass:

“Don’t bother with the passive solar. Your house will overheat in the winter. Yes, you heard that right. Even in Chicago. … You should go with very, very low SHGCs, around 0.2, in your glazing. If this sounds familiar to those of you who are as old as me, it should.

“We were here in the late 1970s when ‘mass and glass’ took on ‘superinsulated.’ Superinsulated won,” Lstiburek continued. “And superinsulated won with lousy windows compared to what we have today. What are you folks thinking? Today’s ‘ultra-efficient’ crushes the old ‘superinsulated,’ and you want to collect solar energy? Leave that to the PV.”

Clearly, he’s not entirely wrong, especially when some of the early failures in the Passive House movement revolved around this very issue of overheating. If you were an early adopter of the Passive House concept, especially if you were the homeowner, and you ended up with comfort issues because of too much glass on your southern facade it certainly would make you doubt the purported precision of the Passive House energy modeling.

Nevertheless, with careful planning, it is possible to avoid this issue of overheating while still getting to enjoy most of the benefits associated with passive solar design. In our case, this meant limiting windows on the north side (net energy losers) to just our daughter’s bedroom, while glazing on the east side shows up only in a small area of our front door.

Small amount of glass in our front door offering some daylighting benefit for our entry area.

In addition, we avoided any potential for overheating from our west-facing windows by using self-tinting Suntuitive glass in our master bedroom and family room. This glass can fluctuate in its SHGC between (.08 – .18) depending on whether in its fully tinted or clear state (varies depending on surface temperature of the glass).

West facade with self-tinting Suntuitive glass.

With the other three sides of the house accounted for, we were able to concentrate all of our attention on the best window layout for the south side of the house. The utility room, which is on the southeast corner of the house, only really needed a small window, so we went with a single 3′ x 5′ unit. In the kitchen, the window above the sink was already going to be limited because of the lower cabinets, and was mainly for a view while doing dishes. This unit ended up being 4′ x 5′. For the kitchen door we went with a mostly glazed door with privacy glass, which has worked out well as it lets in an abundant amount of daylight while it’s never caused any issues with overheating.

The real challenge was getting the family room window on the south side of the house sized correctly. The temptation was to go too large since we had the space to do it. Instead, we wanted to retain some empty wall space for artwork on either side of this window, while also remembering that even the best window is still a lousy wall (e.g. R-40 wall vs. R-6 window).

In the end, we decided to go with a 3′ x 9′ window in our family room, slightly smaller* than the units on the west facade with Suntuitive.

{*7-27-20 Correction: I messed this up. The dimensions weren’t different between the south-facing family room window and the west-facing windows with Suntuitive — it was a height off the floor change. For the south-facing family room window we went slightly higher, 32″ off the finished floor, in order to gain a little more privacy, while on the west-facing windows we maintained a lower height of 27″ off the finished floor to maximize our views out and into our backyard. This 5″ difference may not sound like much, but it has a dramatic effect in terms of overall views and perspective when standing at these windows.}

In terms of wall area on our south facade, the windows and kitchen door account for just under 15% of the total, so not a crazy amount, and obviously nowhere near the amount of glass in a curtain wall.

The Sun’s Path Month-to-Month

For those who haven’t directly experienced a space that utilizes passive solar design principles, it may be helpful to see in photos what exactly this effect means month-to-month in a real home.

In our case, we have a long interior wall that runs east-west along the longest axis of our home. This wall effectively separates the private areas to the north (bedrooms and bathrooms) from the public areas to the south (family room, kitchen, and utility room). For context, this long wall stands almost 16 feet from all of the south-facing windows.

In our kitchen and family room, here’s what the sun looks like near midday in January:

jan fmly rm
Sun in January, slowly moving away from the back wall (at right) that runs east-west along the longest axis of the house.
jan ldry rm
Sun pouring into the utility room in January.

By the middle of February, the sun is already making its way towards the windows, barely able to reach the family room couch, while it still adds plenty of sunshine and warmth to the kitchen and family room areas:

sun feb fam
Sun in mid-February.

By the Spring equinox, the sun has continued its slow march across the family room floor towards the south-facing windows:

sun mar fam
Sun in March.

In the basement, with the help of two large south-facing windows (each 4′ x 4′) and our oversized window wells, the sun is making the same progression as it brightens up the below grade space:

sun mar base
Basement in mid-March.

Although we chose to forego any windows on the east side of our house, mainly for privacy and energy loss reasons, the small amount of glass in our front door still allows our entry area to be bathed in beautiful early morning light without contributing a significant amount of heat gain:

sun mar morning east
East-facing entry area flooded with morning light from the minimal glazing in the front door.

The seasonal path of the sun can also be marked on the exterior by its progress up or down the facade of our south elevation. By mid-March you can see the shadow line formed by our substantial roof overhang beginning to make its way down the siding — at this point, just above the windows and kitchen door. This invisible ‘curtain’ will cover the glass in the windows entirely by the end of June, completely denying the heat of the sun direct entry into the structure.

sun ext mar
South elevation in mid-March. Note the shadow line just above the windows and kitchen door.

Even in April the sun is mostly denied entry; reduced to a sliver of light hitting the wood floor in the family room:

sun apr fam
Family room in April.

In June, by the time of the summer solstice, the sun has been pushed outside completely, limited to the metal sill pans on the exterior of the windows.

Our south elevation during the rough framing stage. Layout from left to right: family room, kitchen door, kitchen window, and utility room.

With significant and thoughtfully placed windows on the south side (combined with a substantial roof overhang), we’re able to enjoy views to the outdoors year-round, allowing us to maintain an unbroken connection to nature in our yard, without any of the heat or glare normally associated with the summer sun. It also means we don’t need to bother with curtains or other window treatments, or the hassle of managing when they should be opened or closed.

Also, since the transition from winter (welcoming the sun in) to summer (denying the sun entry) has proven to be seamless, we’ve been able to avoid installing any curtains or window treatments in order to hide from any periods of unwanted sunlight. Basically, this invisible ‘curtain’ effect of passive solar design means we enjoy all the benefits of window treatments without any of the hassles (routine opening and closing, cleaning, or maintenance and repair), all while maintaining an unobstructed view of the outdoors. This is especially rewarding during the long winter months when starved for sunlight and extra warmth, but equally pleasurable as life begins to hum in the yard with the return of spring and summer.

In the photo below, the family room window (at left) and the kitchen door are protected from the heat of the sun by the roof overhang. The window on the back wall (facing west) is protected by self-tinting Suntuitive glass, which also allows us to enjoy unimpeded views of our backyard without the need for curtains or window treatments, even on the sunniest and hottest days of summer.

sun june fam
Family room in June with no direct sun allowed entry into the space.

On the exterior, by the middle of June, this shadow ‘curtain’ has fallen over the entire face of the south-facing windows, denying the sun entry into the home where it could cause unpleasant glare and unwanted heat gain (these windows have a SHGC of .54), which would needlessly increase cooling loads for our Mitsubishi heat pump system, while also reducing overall occupant comfort.

Around the summer solstice in June, this is what the set-up looks like outdoors:

Southwest corner of the house around the summer solstice.
A second view of this ‘curtain’ effect; this time from the southeast corner of the home.

This effect is also visible from the interior while looking out the south-facing windows. With a substantial roof overhang the sun can barely reach the metal sill pans by the middle of June:

sun june util
Utility room window in the middle of June. Note the sun hitting the outside edge of the metal sill pan.

In June, the sun is able to get slightly deeper inside the home in the basement — in this case managing to hit the surface of the window stool or sill.

sun base june

Even in the heart of the summer, the sun is still denied direct access to the interior spaces on the main floor:

sun july fam
Family room in July. The sun remains outside.

A second look at the metal sill pan from the utility room window, this time in July:

sun july util

After slowly making its way back into the south-facing living areas, by November the sun is once again approaching the back wall in the family room and kitchen:

sun nov family
Family room by mid-November.

Even though the utility room window is a relatively modest size (3′ x 5′), it provides ample daylight and plenty of warm sunshine over the course of our long winter months:

sun utility nov
Sunlight spilling out of the utility room by mid-November.

Here’s another view of the sun exiting the utility room on its way to the back wall in the main living area:

sun utility nov 2
Sun in mid-November.
sun nov kitch
Sun hitting the kitchen countertops in November, bathing the space in a warm glow.

By late December, around the winter solstice, the sun is finally able to hit the back wall in the main living area, maximizing the amount of direct sunlight that enters the house:

sun dec family mbr
Sun during the winter solstice, at the doorway to the master bedroom.

sun kit dec
In late December, the sun hits the back wall where the family room meets the kitchen.

sun dec utility barn door
Sunlight from the utility room window hitting the barn door in the main living area.

Even in the basement, where it’s more difficult for the sun to make its way into the space, with our oversized window wells and two large windows the sun manages to get very close to the center of the space just in front of the structural beam. This light pouring in helps keep us connected to the outdoors, mostly eliminating the cave-like feel normally associated with many below grade spaces. Even on the coldest days in winter, this daylighting effect makes the basement a warm, inviting space.

basement bfws sun
Sunlight entering the basement in mid-December.

Some Final Thoughts

We were expecting to enjoy the seasonal movement of the sun, watching it progress in and out of the main living space, warming us in the winter while also helping to moderate summertime AC demand. One unanticipated surprise, however, is how effective our window layout has been in maintaining a high level of daylighting, even on the grayest of overcast days.

Short of a menacing thunderstorm that turns the skies gray-black, we almost never have to turn on lights during the day. For instance, in the photo below it has snowed overnight, and the skies are an unrelenting blanket of gray. Nevertheless, because daylight has ample means for entering the living space, no artificial light is necessary. Note, too, in the background, how clear the Suntuitive glass is when not in its fully tinted state.

The kitchen door, because it consists mostly of privacy glass, contributes a great deal to this daylighting effect — both in summer and winter — and we’re extremely happy we didn’t choose a more opaque door style.

Another side benefit in this regard is how the porch light outside this glass-filled door also acts as a de facto night light for the kitchen — its soft, but effective, glow makes it easy to navigate around the space in the middle of the night without having to turn on any interior lights.

cloudy day still light
Even on a cold, gray winter day the windows allow in a great deal of daylight, dramatically improving the overall livability of the space while allowing us to keep the lights turned off.

One final, unanticipated surprise is how much the house is flooded with light on cloudless nights when there’s a full moon. The moonlight creates a soft, beautiful source of light as it falls across these interior spaces.

In terms of shoulder seasons, when sunlight still has some access to the interior but outdoor temperatures are mild or even occasionally warm, we haven’t really noticed a problem. In spring, if outdoor temps should reach the 70’s during the day it is frankly welcomed with open arms, as we’re starved for warm sunshine at winter’s end. In the fall, if there’s an occasional too warm day, we simply open a couple of windows. So far we’ve never had to turn on the AC in October, for instance.

If there’s any failure in our set-up, it would be the family room couch. From the end of December until the end of January, if it’s a sunny day, regardless of how cold it gets outside, sitting on the couch is uncomfortable, if not impossible. Sitting in shorts and a tank top would be the only way to make it remotely comfortable.

Thankfully, we’re almost never on the couch during this time, so it’s never been a problem for us. Having said that, if this family room were dedicated office space and I needed to be sitting at my desk from 10am-2pm, it would be extremely uncomfortable. This is a good example of how carefully not just an overall floor plan needs to be designed, but how even individual spaces need special attention, in particular for year-round HVAC comfort based on how occupants are actually going to be using the space.

Overall, we’ve been very pleased with the layout of our windows and their ability, in conjunction with the roof overhang to the south, to allow in ample amounts of sunlight during the colder months while still being able to keep it out on the hottest days of the year. With detailed planning, our experience suggests that designing living spaces for a real passive solar benefit is still a worthwhile goal.

Although it may be safer to ignore this design strategy altogether in the hottest climates (simply designing to keep the sun outside year-round may be the better option, which would include the use of low SHGC glass as Lstiburek recommends), passive solar has proven to be a great source of enjoyment for us, particularly during our winters here in Chicago, which tend to release their grip too slowly and ever so begrudgingly.

If given the chance, we would definitely design our house again with these passive solar techniques in mind.

Flooring: Basement Paint Splatter

0

The Original Plan

We didn’t want to spend a lot of money on basement flooring, so we knew we wanted to keep things simple, especially since we weren’t going for a high-end look for the space. The basement is mostly unfinished, at least by traditional standards. We use the space mainly for working out, reading, office work, some smaller arts and crafts projects, and we’ve created a few small areas for miscellaneous storage.

Whatever we came up with had to be durable, if only to avoid having to replace any flooring should the basement ever have a problem with water (e.g. from a failed sump pump or a leaky hot water tank).

The plan initially was to just seal the floor with tung oil, much like we did for our wood floors. I thought if I used a slurry mix to patch some surface imperfections in the concrete beforehand that it might produce a pleasant mottled look across the entire floor once it was finished with the tung oil.

Unfortunately, once this patching was done, it quickly became apparent that the look was just messy, if not just boring and forgettable. Even tinting the slurry mix to various shades of blue and green didn’t seem to help at all.

base after patches b4 tung
Basement slab ready for tung oil finish.

With the patching complete, I went ahead and did the tung oil application just to get rid of the constant concrete dust on the surface of the basement floor.

base b4 after tung
Tung oil just applied on the left, darkening the concrete as it seals it.

I applied it the same way I did for the hardwood flooring on the main level. I also broke it up into sections, using the preformed contraction joints in the concrete slab as a guide.

base section w: tung
Tung oil applied, waiting for it to soak in before applying it again to any ‘dry’ spots.

I knew I’d have several months while other projects were being finished upstairs to figure out another solution.

close-up corner base tung

An even closer view after the tung oil has been applied:

base tung oil
Concrete mostly dry; ready to wipe down any excess tung oil remaining on the surface.

Jackson Pollock as Inspiration

After almost a year had passed, and with much of the work on the first floor finally complete, it was time to come back and finish up the basement floor.

My first thought was to use the painting techniques of Jackson Pollock as an inspiration.

After looking through online photo galleries of his work and watching some videos, I realized I’d forgotten just how layered much of his work is.

It was while researching his work that I also came across an East Coast (mainly New York?) beach house tradition of splatter painting floors, done mainly, it seems, to hide the sand and mess brought in from the beach, all while giving the floors some added durability.

We decided we’d try to mimic some of Pollock’s technique, but do it in lighter layers so more of the tung oiled concrete could show through.

Since it was too cold at the time to have Green Building Supply ship me all of the paint required, we decided to take a trip to Madison, Wisconsin for the weekend to pick up the remainder of what I needed from Premier Paint and Wallpaper.

Premier is a really nice family-owned independent paint store with a wide variety of brands and products. The paint stores around us are exclusively national chains like Sherwin Williams, Benjamin Moore, or PPG. When you walk into these stores you definitely feel the difference compared to a mom and pop operation.

Premier mixed up what we needed, and we were off to enjoy the rest of our weekend in Madison where there’s always something to do outdoors, and there’s no shortage of great restaurants, like Sal’s Tomato Pies:

sal's

In terms of colors for our splatter technique, we decided to stick with the blue we had used for the basement steel beam and columns, along with white as a neutral color, while finishing with a bright green to liven things up a bit. This combination mimics the iconic color scheme used by Kawasaki motorcycles:

With the walls prepped to prevent overspray from the splatter hitting them, my daughter and I started to experiment in the back corner of the basement with the white color first. We felt like the white color would be the best option as our base coat color, complementing the now tung oil darkened color of the concrete.

base walls prepped
Practicing our technique first with the white concrete paint.

We also took our time to experiment with the other colors, figuring out exactly how we wanted the paint to fall on the concrete — either in droplets or in long, stringy patterns.

experimenting w: each color
Testing out the blue and green paint colors.

Based on this first section, we felt like we could go fairly heavy with the white and still have some of the darker tones of the concrete underneath come through the final finish. In each section we first started with the white to establish a base coat to work off of for the subsequent applications of the blue and then green.

base white going down
This section is ready for the blue and green.

We then played around with how much blue and green we wanted to finish up with on top of the white and the darker concrete underneath.

experimenting more blue
Experimenting with how much blue and green we should use.

Here’s one of the first completed areas around a steel post or lally column:

basement pole
It was exciting to see the colors finally come together to such vivid effect.

A second view of a completed area, this time out in the middle of the floor:

base 3 colors done

As we finished up a section, we would start to sort through the remaining moving boxes and put together each space more permanently. It was also a good opportunity to further purge anything still in boxes that we didn’t end up needing in our new home.

For one area of books we used the traditional set-up of cinder blocks and wood shelves, but we added some character by taking the time to paint the blocks using the floor colors. We also turned the blocks on their side to hide their empty centers. I had seen this technique used in a YouTube video as a way to dress up this type of shelving normally associated with a college dorm room or one’s first apartment:

It definitely added some time to the project as each block required a couple coats of paint, but it was a nice way for my daughter and I to have some more fun with color, too.

This section of books on cinder blocks helps to close off and define this sitting and reading area from the storage and arts and crafts area behind it.

base setting up space
Getting a section of the basement mostly put together.

We were pleasantly surprised by the wide variety of looks, textures, and playful randomness in the overall pattern of the paint splatter.

another view cinder
A closer view of the painted cinder blocks.

It’s definitely unpredictable to a great degree, but with practice it did become easier to control, and we did develop a feel for how we wanted each area to end up looking.

blk lgt cinder
An even closer view of the cinder blocks, including an unfinished gas pipe ‘robot’ light.
getting white base coat down
Establishing the white base coat in another section before adding the blue and green.

Here are several close-ups showing some of the texture created by the splattered paint, whether as drops or longer, stringy ropes.

splatterd
splattera
splatterc

A wider shot showing the layering of the three colors, with the darkened concrete and some of the slurry patches still visible underneath.

splattere

We weren’t afraid to leave some areas with a lighter application of paint. The mix of light and heavier areas of coverage helps to give the floor visual interest, and it hopefully emphasizes the human element involved in the final look of the finish.

basement spatter close up
An area with lighter coats of paint.

Once the white paint was applied, we would let it dry overnight. The next day we would come back and apply the blue.

base flr lgt bg
Close-up view of a lighter area with the dark concrete still visible underneath.

Since each color would have areas of fairly heavy coverage, after the white was down we always applied the blue and green coats in our socks to avoid even the possibility of our shoes pulling up any areas of uncured paint.

basement spatter in sunlight

Most of the photos show the colors in daylight, with the sun coming through the two basement windows, but we’re equally happy with how the floor looks under artificial light at night.

blue strings
The floor finish under ceiling lights at night.

We typically gave the blue 24 hours to dry as well, although there were a couple of times where we waited only about 6-8 hours before starting the green. With less paint on the floor, it seemed to take the blue less time to sufficiently dry.

The goal was to apply less paint with each change in color. We definitely wanted the white to remain the main background color, with the blue and the green acting as pops of accent color.

base 3 colors done

When the floors had only been sealed with the tung oil, although it solved the concrete dust issue, it did make several areas slippery smooth. Because the paint splatter hits the concrete in various thicknesses, the slightly uneven texture this produces helps make the final finish slip resistant. Even with this high build in some spots it’s never been a problem; instead, this texture is pleasant both underfoot or even to the touch.

I was a little worried about the thicker areas of paint drying and curing properly, but apart from some bubbles that popped as the paint dried, and some areas where the paint film shows some wrinkling on the surface, we had no issues in this regard.

wide shot base spatter

In addition to being slip resistant, it was also a relatively inexpensive finish to create, requiring just 3 gallons of white, 2 gallons of blue, and a single gallon of the green. This was in addition to the initial tung oil and citrus solvent (around 4-5 gallons of each) that we had applied to first seal the concrete. For slightly less than a dollar a square foot, the paint splatter technique produces a unique, one of a kind floor finish.

And the choice of colors is limited only by one’s imagination. We even contemplated adding some stencils that could’ve incorporated numbers, letters or words, or even distinct shapes. Instead, we decided to keep things simple and stick with just the splatter pattern. Nevertheless, there’s no reason not to explore all of these options before settling on a final design.

spatter cu texture
Extreme close-up view of the final finish.

One other key advantage to the paint splatter is that if any part of the floor were to see damage, whether from abrasion or moisture pushing the paint off the concrete, it would be relatively easy to repair with some additional paint applied using the same process.

This would not be the case had we used a single color, cut and rolled the typical way, across the entire basement floor. Any damage, even in a small area, with a single color tends to look horrible, and it would be difficult to correct it without leaving a ‘crater’ look in the area that had peeled and then been repaired.

base paint cans
The products we used for each color of paint splatter.

Premier couldn’t mix the blue in the Safecoat product, so we had to use the Fixall enamel instead. Even though it has more VOC’s than the Safecoat, within a couple of days any noticeable smell had dissipated. It probably helps that the total square footage of blue applied is fairly small.

outside corner
Back corner of the basement office.

At outside walls we ended up letting the paint hit the Air Dam that’s covering the gap between the slab and the foundation wall (there’s rigid foam below this gap acting as a thermal break between the slab and foundation wall).

another outside corner
An outside corner.

Since it was somewhat random how the paint hit this gap, some spots were hit heavily, while most just saw a slight smattering of color in this area.

basement spatter near fdn wall

There were only a couple of spots where the paint splatter managed to get behind or beyond the paper we had taped on the walls to protect them. For those spots it was easy to go back and touch them up with a small brush of wall paint.

spatter at outside wall

In terms of technique, we used paint stirring sticks to apply each color. Depending on the effect we wanted, how we worked our wrist determined the pattern of the paint. For example, if we loaded up the stick with a lot of paint, or even just a little, and we flicked the stick hard — like you would using a fly swatter — you could get a lot of drips and ‘dots’ over the floor. With a lot of paint on the stick you ended up with heavy droplets and spray. With less paint, you still had drops and a spray effect, but the coverage was much lighter over the tung oiled concrete.

This worked great for applying the white base coat when we were trying to get a lot of color on the floor all at once, and at different rates of coverage.

For the blue and the green we again loaded up the stick heavily with paint, but with very little movement of the wrist — just with a slow and deliberate arm motion — we let the paint fall off the stick using slowly undulating half-circles, figure eights, and wave motions.

The photo below shows a corner of the basement office with just the slurry patches and the tung oiled finish. With the walls protected, we could begin laying down the three colors of paint splatter.

office before splatter
Corner of basement office ready for paint splatter.

Here’s the same area after the three colors of paint splatter have been applied:

base closet
Corner of the basement office complete.

And here’s the main area of the basement office as we were finishing up:

basement office complete

And here’s the foot of the basement stairs:

foot of stairs

The final finish is definitely playful and whimsical, bringing a lot of life to the floor through the use of bright, bold splashes of color. With a combination of toned-down colors, I can imagine this splatter technique working even in a space that’s been more traditionally designed and decorated.

apei
Reading and hang out area finally complete.

By staying neutral with the wall color, and by leaving the ceiling unfinished, it keeps the visual emphasis on the floor and the bright blue of the structural beam.

Here’s another view of the reading area:

apeii

A close-up of the floor, along with the concrete lightbulb:

floor w: concrete lightbulb

We managed to sneak in some extra storage by placing smaller books on the steel beam:

beam books

We also added pops of red accents in the basement, something we would continue on the main floor of the house:

red wrench
Found this oversized wrench online.
red lantern
My mom contributed this antique kerosene lantern for use as one of our red accents.
oil burner
This light switch cover seemed nicely ironic for an all-electric home. It also fits in well with our Urban Rustic design scheme.

This chair was our only splurge on new furniture in the house —- an episode of Comedians in Cars Getting Coffee ended with Jerry Seinfeld and Jim Carrey enjoying a good spin:

spun cu

Undoubtedly, a ridiculously expensive chunk of plastic, but worth every penny if you go by the giggles-per-person of those trying it out for the first time:

A revealing test to see if your inner child is still alive and kicking.

redcoffeebrgt
Plates on a decorative piece of concrete. Real coffee beans were embedded in the bottom of the form to create this look, along with dark tung oil applied to the white concrete.

Eventually I’ll get more artwork up on the currently mostly bare concrete walls — it should really help to tie the room together:

big lebowski
Found this poster online.

The paint splatter and tung oil finish has been in place for over a year now. It’s holding up well, even under the friction from the Spun chair wobbling around, or the office chairs and workout bench being slid across the floor.

blue glass arrow
Blue glass embedded in white concrete arrow.

The only thing I would do differently is probably try and find a concrete sealer that’s less expensive than the tung oil and citrus solvent combination.

chinesebeauty1
Chinese ‘beauty’.

Using a different product would require testing it in a small area first for adhesion — both the sealer over the bare concrete and, once the sealer is cured, to make sure that the concrete paint fully adheres to the sealer without any issues. It would take some time to establish this definitively, but well worth the effort in order to avoid any potential issues with peeling paint.

hulk go green

Apart from its relatively easy application and excellent durability, we love the floor finish because it was so much fun to create. While it’s definitely not a formal looking finish, it is a project the whole family could be involved in, regardless of age or ability. And we would gladly do it again if given the chance. We can’t recommend it enough if you’re looking for a fairly inexpensive way to finish a floor in a unique way.

Flooring: Tile

7

Porcelain Tile

We chose porcelain tile mainly for its durability, plus we found a collection of tile that mimics aged concrete, which we felt would work really well with our Urban Rustic theme for the house.

The Iris US Ecocrete collection allowed us to use two different colors while maintaining a consistent overall look through the house. For example, in the kitchen, entry, and utility room we went with the Sage color; a nice mix of green, gray, and even some spots of very dark green or black. For the master bath we went with the Weathered Black since we were going to have some red accents and we wanted to play with color a little bit.

The Ecocrete tiles are also Greenguard certified, and they have a slightly rough surface texture to help prevent slips or falls.

For tile underlayment, Wonderboard Lite was our base.

wonderboard

For thinset and grout, Mapei products were used, readily available from Floor and Decor.

Mapei thinset bags

For our shower walls, we used a newer system from USG, their Durock Glass-Mat backerboard. For the floors we used their pre-sloped shower tray system.

The shower kit also came with all the drain components.

shower drain cover

Colors and Textures

In the photo below, all of our tile selections are laid out in preparation for deciding on grout colors.

The porcelain hexagon tile was used on the floor of our second bathroom, in addition to the floor of each shower. These were the only areas where we didn’t use the Ecocrete tiles.

The blue glass accent tile was used in our second bathroom shower, while the red glass was used in our master bath shower.

The white subway tile was used in both showers for the ceilings and the walls.

tile grout selections

Tile almost complete in the kitchen:

kitchen tile being installed

Tile started in the master bathroom:

mbath floor tile going down

For the two showers we decided to orient the slightly larger than traditional subway tile in a vertical pattern, a subtle repetition of the strong vertical lines of our charred cedar siding.

In the second bathroom shower we used a 4″ x 10″ subway tile, while in the master shower we went even larger using tile that measured 6″ x 17″.

2nd shower tile going in

We kept the glass accent tile to a minimum, utilizing it inside each niche and next to the shower head and valve.

2nd shower niche going in
Blue glass going inside the niche.

Using a frameless fixed panel of glass without a door keeps each shower more open and easier to access. It also means one less thing to have to clean, maintain, or eventually replace.

By covering the curb with a towel before turning on the water, very little water escapes to splash on the nearby baseboard or drywall. A small price to pay, we feel, in order to keep the shower area more open.

In terms of size, the second bathroom shower measures 3′ wide and 5 1/2′ long, while the master shower is slightly larger at 3′ x 5′ 10″. Both spaces are very comfortable to shower in.

2nd shower done

We chose to tile the ceiling of each shower since, in our experience at least, drywall doesn’t tend to hold up very well in this area, instead flaking or peeling off over time. By combining the tiled ceilings with their lower height than the room, visually we like how it makes clear that the shower area is its own dedicated space.

2nd shower niche done
The blue glass almost looks black until you step into the shower.

We liked the look of the traditional hexagon pattern, plus it feels nice underfoot, both in the showers and on the floor of the second bathroom.

2nd bath floor

Finished master bath shower with glass panel:

master shower done

In both showers we used a Speakman shower head and valve. They’re reasonably priced, and they have a good reputation for durability. We had seen them used in hotels on a couple of vacations prior to our build. We were surprised by their quality, especially for a brand we had never previously heard of before.

All of our plumbing fixtures, including these shower heads, are Water Sense certified in order to keep our total water usage to a minimum, while also hopefully reducing our annual water bill.

Although I’ve read complaints from users online about their dissatisfaction with a lower flow shower head — some even going so far as to remove the flow restrictor inside the head in order to increase the flow of water — we couldn’t be happier with our shower heads, faucets, and toilets. So far, at least, we’ve had zero issues with any of these Water Sense certified fixtures.

Master bath niche with red glass accent:

master bath niche
The seat is nice to have, not for sitting though, mainly for holding shampoo and soap, and a nice spot to put a towel for drying off.

Master bathroom floor in the weathered black tile:

master bath floor

A second view of the black tile as it meets up with the hickory flooring in the master bedroom:

2nd master bath tile

The tile in the entry area as it meets up with the hickory wood flooring:

entry tile

The hickory meeting up with the kitchen tile:

kitchen family rm corner finished

With all of our flooring complete on the main floor, the only area left to finish up was our basement floor. I’ll discuss the decorative finish we came up with for the concrete slab in the next blog post.

Building in the Suburbs

0

Once you’ve decided to pursue a new construction build, regardless of where you buy land, it’s likely to raise some issues regarding unintended consequences (whether or not the homeowner, builder, or developer wishes to acknowledge this is another matter).

In a rural setting, for example, you’re likely to be removing fertile farmland, or cutting down someone’s idea of a pastoral idyll or enchanted forest.

Look out the plane window on a flight from New Orleans to Chicago, or Denver to Cincinnati. Everything you see is already in agricultural production. This huge expanse of naturally fertile ground literally feeds the world. The suburbs growing around any city show that we are losing agricultural land even as the human population continues to grow. 

— David R. Montgomery, Dirt: The Erosion of Civilizations

With nature setting limits on land viable for agriculture, future generations may be horrified by our willingness to build over these acres of fertile soil with so little thought for the potential long-term consequences.

Many of Wendell Berry’s essays lament this lack of respect for the land, whether it’s cultivated field or wild forest:

In a larger city, on the other hand, you might be tearing down something people find historically significant, or maybe just significant to the character of a specific block or neighborhood.

Building in the suburbs, even when it’s done on a previously empty infill lot in a well-established subdivision like ours, still comes with its own set of unique implications.

For example, at one extreme there is a great fondness for suburbia, even a kind of utopian idealism.

It’s not uncommon at this point in their history for this idealism to be wrapped up in fond childhood memories, eliciting a vibrant strain of nostalgia (some might suggest of an unhealthy, cloying variety) for suburban life.

All too often suburbia is just the unquestioned background for mainstream life, for example, in the string of popular 1980’s films by John Hughes:

Although it’s hard not to notice in this case, at least, that the main characters escape from the suburbs to the big city when they’re in the mood for some excitement, adventure, and cultural enrichment.

At the other end of the spectrum there is utter contempt for suburbia and its perceived values, readily apparent in any number of movies, novels, or the DIY Punk movement of the late 1970s and early 1980s (and still going strong).

From this perspective, the suburbs are where the soul goes to die (particularly for the adults who have made their peace with authority, or so the argument would run). In other words, there may be safety in the suburbs, but it comes with a price. In fact, for many of its critics, suburbia represents mostly denial rather than any kind of meaningful affirmation.

The Revolutionary Hill Estates had not been designed to accommodate a tragedy. Even at night, as if on purpose, the development held no looming shadows and no gaunt silhouettes. It was invincibly cheerful… A man running down these streets in desperate grief was indecently out of place.

— Richard Yates, Revolutionary Road

For many young people the suburbs are what you end up trying to escape. The suburbs are missing something; the only thing on offer is the bland, the same, the quiet, and the sleepy. At best the suburbs in this case can be thought of as an uncomfortable launching pad, or a spur motivating escape plans. Your dreams and aspirations lie elsewhere, and the sooner you can move on the better.

As far apart as these two extremes might appear, feelings about the suburbs can even fall somewhere in-between (especially for those of us who were raised in suburbia), as a kind of bittersweet mix of love and contempt — e.g. ‘I didn’t choose to grow up in the suburbs, but that’s where many of my most vivid memories reside‘.

Early on in his 33 1/3 study of Arcade Fire’s album The Suburbs, Eric Eidelstein makes a similar point, “There’s nothing I wanted more than to leave my suburban upbringing. Now that I have, a part of me wishes I could dip my toes back into the bubble… Suburbia is innocence and ignorance… freedom and constraint… lightness and darkness.” The key, and devastating, word in that passage being ‘bubble’.

This Smashing Pumpkins song and video captures a similar feeling:

Two wildly different episodes from the original Twilight Zone TV-series reflect these violently divergent attitudes towards suburbia. The first is a love letter to a golden childhood, forever lost to the passing of time and the realities of adulthood. The second represents a kind of hell of conformity, reeking of paranoia and dread. Civility is revealed to be only a thin veneer that easily falls away under the slightest pressure, exposing ugly truths buried just below the surface of everyday life. For anyone who grew up in the suburbs these storylines are relatable, no doubt to varying degrees.

Walking Distance:

The Monsters are Due on Maple Street:

In my own case, living in the suburbs entailed countless hours of playing various sports with friends in the neighborhood, and seemingly endless bicycle rides through contiguous subdivisions waiting for the day we could drive cars (or ride motorcycles) and actually go somewhere, alongside memories of the ‘perfect’ neighbors who, later it was revealed, had separately engaged in fraud and embezzlement at work, seemingly out of unadulterated greed since neither of them ‘needed’ the money.

Perhaps no other work better captures this strange mixture of paean and warning about what lays just below the surface in the suburbs than David Lynch’s Blue Velvet:

For decades Americans have abandoned small farming communities and larger metropolitan areas to flee to the suburbs, mainly in the hopes of rounding off the sharp edges of life as it’s experienced on a farm or in a large city.

The suburban ideal offered the promise of… an environment that would combine the best of both city and rural life.

—Kenneth T. Jackson, Crabgrass Frontier

What was clearly being left behind were the extremes. For example, brutal — albeit beautiful at times — farm life:

Days of Heaven:

Dawn to Dusk:

And the seemingly cartoonish, but no less lethal, aggression often associated with the big city:

The Warriors:

Mean Streets (NSFW):

As Jackson notes in Crabgrass Frontier, the suburbs “offered the exciting prospect that disorder, prostitution, and mayhem could be kept at a distance, far away in the festering metropolis.” Simultaneously, although nurturing a carefully manicured lawn (a practice that dates back to at least the 19th century), the average suburban plot freed its owner from the back-breaking labor associated with farming, along with its attendant risks like crop failures, the vagaries of maintaining livestock, or the whims of the marketplace.

In staking out a middle ground, suburbia tries to avoid the excessive “liveliness” of the big city, while also studiously avoiding the brutal cycles of life and death that anchor and allow a working farm to thrive. Nevertheless, suburbia remains tethered to city and farm; almost entirely dependent on the city’s industry and markets (both for employment and consumption), while the farms supply virtually all of its food supply. In a way, then, suburbia represents both a denial of life and death.

But the extremes are no less real, and they remain virtually impossible to avoid altogether. Denial just makes the situation worse.

In the case of Blue Velvet, for instance, where the villain, Frank Booth, is presented as evil incarnate stalking around the suburbs at night, things may be even worse than they first appear. As David Foster Wallace points out, “…the real horror in the movie surrounds discoveries that Jeffrey makes about himself… not of Dark Frank but of his own dark affinities with Frank is the engine of the movie’s anxiety.” Lynch, according to Wallace, drives this point home in the car scene when Frank turns back to Jeffrey and says “‘You’re like me’. This moment is shot from Jeffrey’s visual perspective, so that when Frank turns around in the seat he speaks both to Jeffrey and to us [emphasis added].”

If the suburbs at their worst represent an attempt to push away harsh realities, then it can’t go on forever, and, in the meantime, the attempt itself can produce some pretty nasty consequences.

This kind of angst in the suburbs almost seems inbred at this point; not only has it survived but it’s thrived for decades, seen in the boredom and unfocused rage of Rebel Without a Cause right up to the grunge and riot grrrl movements of the early 90’s and beyond.

The chicken run from Rebel Without a Cause:

Bikini Kill’s Rebel Girl:

Meanwhile, the kind of human wreckage detailed in Madeline Levine’s The Price of Privilege is clearly deeply rooted in suburban realities and conventional notions of what constitutes success and ‘the good life.

As a result, reasons for disliking the suburbs are legion, especially evident once you start looking for opinions. Moving beyond the general stereotypes of conformity and isolation, there are also stark realities regarding how suburbia came to be and how it’s been maintained, which is especially devastating when you realize nothing was a foregone conclusion, and that choices have been made at every stage of their progression.

In confronting “The prevailing myth… that the postwar suburbs blossomed because of the preference of consumers who made free choices in an open environment,” Jackson points out that “Because of public policies favoring the suburbs, only one possibility was economically feasible.” Once government programs like “FHA and VA mortgage insurance, the highway system, the financing of sewers…”, not to mention “…the unusual American practice of allowing taxpayers to deduct mortgage interest and property taxes” are taken into account, the suburbs seem not only inevitable but carefully planned for — even if many of their long-term consequences were not.

Understanding this historical context makes a work like Family Properties even more of a heartbreaking read. Whether it’s the well-documented history of red lining, blockbusting, ‘contract selling’, restrictive covenants, or even more publicly overt acts of racism, the suburbs certainly have an ugly past.

As Beryl Satter makes clear, being forced to ‘buy on contract’ meant African Americans lost “their savings during the very years when whites of similar class background were getting an immense economic boost through FHA-backed mortgages that enabled them to purchase new homes for little money down… While contract sellers became millionaires, their harsh terms and inflated prices destroyed whole communities.”

In effect, one group of Americans enjoyed the benefits of homeownership, including selling years later for a substantial profit (in many cases passing this money on to a second generation as part of an inheritance), while another group of Americans lost their entire life savings.

And that past, unfortunately, never seems to be very far away.

It is this kind of historical context that helps explain, at least in part, the resonance of a movie like Get Out:

It’s undeniable, then, that the suburbs, as an idea and a physical reality, are overdue for some kind of transformation — in terms of socioeconomic issues, resource demands and energy use, architectural aesthetics, transportation, water management, their relationship to nature (both wild and cultivated), etc. The list of issues that could be addressed is truly daunting.

Here is one attempt:

The suburbs are also dragging around other cultural baggage besides just single-family homes and endless miles of congested highways. For instance, it’s almost impossible to bring up suburbia without acknowledging the rise and fall of the shopping mall, at least the dominant style of mall popular since the second half of the 20th century:

As others have clearly documented (perhaps most vividly by Dead Malls), many of these shopping malls look to be on their way out, as both cultural touchstones and architectural objects:

In their place, one proposed solution is Lifestyle Centers. It’s not at all clear that anyone has a definitive, bullet-proof, strategy for overhauling these structures, and ‘lifestyle centers’ appear to be little more than a variation on the original shopping mall form. In fact, it appears cities and developers are just guessing at what might work.

One solution for the suburbs in general might be pockets of self-contained neighborhoods, mimicking the dynamic energy of urban living Jane Jacobs wrote about in Death and Life of Great American Cities, which is reminiscent of many traditional European cities, and even smaller village neighborhoods:

Whether or not the housing density necessary to achieve this is possible (e.g., building up to avoid excessive sprawl, with each individual residential unit smaller than what we’ve grown to think of as normal), it would also require a high-level of city planning and cooperation amongst all the stakeholders to incorporate all the services and day-to-day needs of the population, all while managing to also maintain and hold onto significant green spaces. A tall order indeed.

Even so, there have been pioneers and experiments trying to explore various possibilities.

For example, Village Homes in Davis, California, developed in the 1970’s, pursued a more holistic approach to residential construction.

His comments at the end of the video regarding their battle with the status quo is particularly telling. You can read more about the project here: Village Homes

More recently, the founding partners of GO Logic worked to create Belfast Cohousing Ecovillage.

The hope is that living arrangements and social networks like these will improve the participants’ quality of life.

These kinds of cooperative living and working arrangements are growing in popularity, with a major historical antecedent being Mondragon in Spain.

As Americans grow increasingly disenchanted working for large, unaccountable corporate entities, these kinds of organizations have the potential for significant expansion, even in places like Cincinnati, which is hardly thought of as a progressive redoubt.

South Mountain Company, based on Martha’s Vineyard, would be one successful example from the construction and design fields (Marc Rosenbaum, who’s had a significant presence on GBA, is one of their employees/co-owners). John Abrams, the founder, wrote Companies We Keep, a compelling and detailed read on the evolution of the business.

For anyone who’s interested, the US Federation of Worker Cooperatives is an excellent resource for those wanting to pursue this idea further.

There are still other projects, for instance, community gardens or larger scale suburban permacultureguerrilla gardening, or even Brad Lancaster’s street project, which try to improve the quality of life at the neighborhood level of a subdivision or even a single block (note that it’s no accident that all of these smaller projects improve our connection to nature).

Even something as small as planting a hell-strip on your own with colorful perennials is a start — something we see more and more of in the residential neighborhoods just outside of downtown Chicago, and even out here in the suburbs. Considering their tiny area of square footage, these mini-gardens have an incredibly powerful visual impact.

These projects represent mostly small-scale, but no less valid, attempts to make suburban life better and more meaningful for residents and visitors alike. In addition, these projects point to our intrinsic need for maintaining a real connection with nature, now often referred to with the buzzword notion of Biophilic Design, itself an outgrowth of E.O. Wilson’s biophilia hypothesis.

Almost anything would be preferable to the typical mix of poorly built cookie-cutter homes surrounded by congested roadways and the endless, and largely undifferentiated, strip mall hell that we currently endure:

As with strip malls, if houses prove to be equally unloved, even despised, it’s easy as a culture to let them rot or just bulldoze them and start over. If people are going to put in time, money, and effort to save something, it had better be well-loved, i.e. fulfill some pretty fundamental needs.

The existing and aging housing stock ringing every large city in America isn’t going anywhere. Whether rehabbed in a sporadic and piecemeal way, with varying amounts of success (both in terms of build quality and energy consumption), or the issue is addressed head-on by local and federal programs, something will need to be done.

It’s possible to imagine a large-scale retrofit program, with Passive House, or at least Pretty Good House, goals set as the benchmark. After tearing down the most dilapidated units, making way for the new, there would still be ample opportunity to rehab existing structures in a thoughtful way that could be a real boom for employment (maybe even allowing us to finally establish a much needed national apprenticeship system) as it also works to draw down on our housing stock’s demand for energy. It would also be offering people work that has real, tangible benefits to our society and the world as a whole, something that’s missing from most construction work at the moment.

If one’s intent, however, is just to dismantle the logic of the suburbs, there’s certainly no shortage of intellectual rocks lying around if you want to pick some up and start throwing them through the shiny, glass-filled facade of suburbia.

And frankly, it’s kind of fun to do. For example, how about suburbanites as brain-dead zombies out to mindlessly consume:

Whether it’s their costly infrastructure and massive energy consumption, their car dependency, their love affair with lawns, their lack of density, their total isolation from farming (or nature more generally; even where it does pop up it tends to look and feel like an afterthought), or the isolation from what the city has to offer, the suburbs certainly have their issues, many of them profound if not existential.

And even though I think all of these issues are certainly well worth thinking about, especially if you have the ability to choose between rural, urban, and suburban locations for work, the fact remains that for many people the suburbs are, in fact, still the best option for housing.

So the question remains: How do we make the suburbs better? 

In our case, my wife works less than ten minutes from home. Unfortunately, a car is still the only real option for transportation (rather unbelievably) — e.g., busy roadways and a lack of continuous pedestrian or cycling pathways make what is an otherwise short commute somewhat perilous to navigate. Nonetheless, moving into Chicago proper, or out to a rural setting, didn’t make much sense to us, mainly because of the added drive time.

After deciding that we would try and build something new here in Palatine, a suburb of Chicago, we concluded that we should do our best to make something that would be loved and cared for long after we’ve moved on.

For the house itself this meant making choices regarding the structure, while for the yard, at least in our case, it meant pursuing permaculture principles rather than the more typical suburban lawn with some foundation plantings (more on the specific details in future posts).

Obviously, one house here or there that bucks current trends isn’t going to change much about an entire culture. A house like ours is mostly just to demonstrate what’s possible. Nevertheless, there’s real opportunity for large scale change, whether in our bigger cities, rural areas, or even the suburbs.

In the cities it could mean carving out space for many more community gardens, insisting on Passive House (or at least Pretty Good House) structures, limiting the use of cars while overhauling public transportation, all while giving priority to pedestrians.

Also, coming up with various strategies to avoid gentrification so that once a neighborhood is fully revitalized the original, long-term residents aren’t forced out by a higher cost of living (mainly through increased rents and property taxes).

As Aaron Shkuda documents in his book The Lofts of SoHo (Gentrification, Art, and Industry in New York, 1950-1980), a large influx of artists and the culturally much-maligned ‘hipsters’ is typically the initial spark a struggling neighborhood needs to begin a turnaround.

“The form of development that artists pioneered in SoHo provided a way for cities to confront the urban crisis without the financial and social costs of slum clearance… the mode of development that grew in SoHo was the antithesis of urban renewal. It was unplanned, and it stymied the attempts of experts or politicians to control it… SoHo provided a distinctly urban alternative to the structures built through urban renewal. These projects mainly attempted to provide urban residents with amenities found in the suburbs, such as easy auto access, security, and a verdant, non-urban feel. SoHo was gritty, urban, dense, and all the more popular for it… the history of SoHo demonstrates that it is perhaps the neighborhoods that artists create, rather than the artists themselves, that help draw and retain [educated professionals].” 

—Aaron Shkuda, The Lofts of SoHo

In fact, as Shkuda points out, this formula has repeatedly proven so successful that “it is difficult to find a contemporary American city without residential lofts.” In effect, large, empty or abandoned, spaces converted into residential lofts is a stamp of approval, announcing that a specific neighborhood is now desirable or even the height of ‘cool’.

The trick is making sure the transformation — making an area worth going to because of art galleries, artisan shops, unique restaurants, bars and coffee shops, and overall cultural vibe — doesn’t overshoot the mark, moving past rebirth to a stage where only the wealthy can afford to stick around and participate.

Moreover, the fact that SoHo emerged from the ashes of deindustrialization not through centralized planning but rather the hard work and vision of individuals is worth celebrating. More importantly, it’s worth remembering as others take on the largely thankless task of urban renewal in their own neighborhoods (perhaps much the same applies to rural and suburban areas: if you want something different, make it different).

In rural areas we could encourage a transition from factory farms to a more holistic agroforestry model (hopefully inspiring some young people to come back from the city and suburbs to pursue a viable and rewarding career in farming). This model could include ample opportunities for agro-tourism, both to benefit locals and those who will visit from the suburbs and cities.

In the suburbs, in addition to renovating aging housing stock (again, to Passive House or Pretty Good House levels of performance), the development of walking and cycling trails, not unlike the Atlanta Beltline, for example, which would include walkable areas that thoughtfully combine residential and commercial zones, all while remaining focused on our need for nature via biophilic design strategies, could be the transformation that allows the suburbs to move beyond well-earned, but stale, cliches.

In addition, the suburbs require not just a new vision regarding mixed use, but also mixed income, providing housing to all, whether poor, old, young, or its more traditional economically secure nuclear families.

Unfortunately, if the glacial rate of change from conventional to ‘green’ building techniques in the construction industry is any indicator, then the suburbs may just carry on doing their thing, loved by some as they alienate and agitate others, all while remaining quietly, but defiantly, resistant to change.

Siding Part 1: Continuous Insulation with a Rainscreen

10

Continuous Insulation vs. Double-Stud Wall

Although builders can make either approach to high-performance walls work, we decided continuous insulation (or CI for short) made the most sense to us. And while continuous insulation has its own challenges, especially in terms of air and water sealing details around windows and doors, intuitively we felt insulation on the outside of our sheathing would give us our best chance at long-term durability for the structure.

In spite of the fact that these kind of wall assemblies are climate specific, for anyone interested in the performance of various wall assembly approaches this BSC paper is an excellent place to start:

High R-Walls

Or you can check out Hammer and Hand’s evolving wall assembly strategies here:

Passive House Lessons

And here’s a mock-up wall assembly by Hammer and Hand showing many of the details we incorporated into our own house:

While many believe a double stud wall simplifies much of the framing, we decided that a continuous insulation approach, which in theory should better manage seasonal moisture changes inside the walls while it also eliminates thermal bridges, was worth the extra effort.

2 Layers of Rockwool over Zip Sheathing

Based on the drawings from our original builder, Evolutionary Home Builders, who was going to use 3.75″ inches of rigid foam, and the recommendations of both PHIUS and Green Building Advisor for our climate zone 5 location (leaning heavily towards PH performance), we decided to go with 4″ of Rockwool Comfortboard 80 on top of our Zip Sheathing.

For more information regarding how we came up with the specifics of our wall assembly, go here:

Wall Assembly

Finding Subcontractors for a Passive House

In the Chicagoland area it’s still a struggle to find builders or subcontractors who are knowledgable about, or even interested in, “green building”. In fact, despite our well-documented experience with Evolutionary Home Builders, clients continue to hire Brandon Weiss (Dvele and Sonnen) and Eric Barton (apparently now on his own as Biltmore Homes, or Biltmore ICF) presumably because the options here in Chicago remain so limited. We assume this is the case because we still get the occasional email from current or former clients who have also had a negative experience working with Brandon or Eric. In addition, even though PHIUS has dozens of certified builders and consultants listed for Illinois and the larger Midwest region, it’s unclear just how many of them have worked directly on an actual Passive House project.

Until there’s more demand from consumers, or the building codes change significantly, it’s difficult to imagine the situation improving much in the near future. This is unfortunate since particularly here in the Chicago area, or the Midwest more broadly, homes could really benefit from the Passive House model, or something close to it, e.g. The Pretty Good House concept, because of our weather extremes (dry, cold winters and hot, humid summers). The combination of meticulous air sealing, high R-values, and continuous ventilation associated with any high-performance build is hard to beat in terms of day-to-day occupant comfort, not to mention the significant reduction in both overall energy demand and the cost of utilities.

In our own case, when I think of all the individual trades we had to hire, securing a siding contractor was far and away the most difficult. Our HVAC contractor for the ductless mini-splits was already somewhat familiar with “green” building and PH, so working with me on air sealing details and dealing with a thick wall assembly didn’t worry him. Also, if I had it to do over, I don’t think I’d bring up all the PH details with a plumbing or electrical contractor when getting bids since the air sealing details are pretty straightforward and can easily be planned for and executed on-site after they begin their work (assuming someone else, most likely a rough carpenter, GC, or homeowner is tasked with all the air sealing chores). And if the concrete sub is unfamiliar with insulation under a basement slab, or over the exterior walls of the foundation, then it’s easy enough for framers, or even homeowners if necessary, to do this work, along with installing a vapor barrier like Stego Wrap before the basement slab gets poured.

For siding, however, because of the level of detail involved before the siding itself could be installed, it was a real challenge to even get quotes. As things turned out, we had nearly twenty contractors (a mix of dedicated siding contractors and carpenters) visit the job site before we received an actual estimate. Many of those who visited the job site expressed genuine interest, most going so far as to acknowledge that this kind of wall assembly made sense and would probably be mandated by the residential code at some point in the future, but almost without exception they would disappear after leaving the job site — no bid forthcoming, and no response to my follow-up phone calls or emails.

Clearly they were terrified, not without justification, to tackle something so new, viewing our project through a lens of risk rather than as an opportunity to learn something new. From their point of view, why not stick with the type of jobs they’ve successfully completed hundreds of times in the past? It also didn’t help that I was a first time homeowner/GC, rather than a GC with a long track record of previously built homes in the area.

In addition, not only is continuous insulation over sheathing a novel concept in the Chicago area, especially in residential builds, even utilizing a ventilated rainscreen gap behind siding is almost unheard of — typically Hardieplank lap siding is installed directly over Tyvek or similar housewrap (this can be observed directly on hundreds of job sites across the city and suburbs). And this isn’t entirely the fault of contractors. For instance, how many homeowners when presented with the idea of continuous insulation, or a rain screen gap, balk at the extra costs associated with these techniques without carefully considering the potential energy savings or increased durability for the structure?

While there are any number of certified LEED projects in our area, and even some Passive House projects (both residential and commercial) in Chicago and the surrounding suburbs, for the most part consumers are still largely unaware of Passive House or other “green” building standards like Living Building Challenge. Clearly “green” building, let alone Passive House, has its work cut out for it here in the Midwest if it ever hopes to have a meaningful impact on the construction industry.

Installing Rockwool over the Zip Sheathing

Mike Conners, from Kenwood Passivhaus, was nice enough to recommend Siding and Window Group, which definitely got us out of a jam. Thankfully, Greg, the owner, was up for the challenge and was nice enough to let us work with two of his best guys, Wojtek and Mark.

Initially Wojtek and Mark dropped off some of their equipment at the site the day before they were to start work on the house. This gave me a chance to go through many of the details with them directly for the first time. Although a little apprehensive, they were also curious, asking a lot of questions as they tried to picture how all the elements of the assembly would come together. In addition to the construction drawings, the series of videos from Hammer and Hand regarding their Madrona Passive House project were incredibly helpful (this project in particular was a big Building Science inspiration for us).

Also, this video from Pro Trade Craft helped to answer some of the “How do you…?” questions that came up during the design and build phases:

As sophisticated and intricate as some architectural drawings may be, in my experience nothing beats a good job site demonstration video that shows how some newfangled product or process should be properly installed or executed.

On the first day, while Wojtek and Mark installed the Z-flashing between the Zip sheathing and the foundation, along with head flashings above the windows and doors, I started putting up the first pieces of Rockwool over the Zip sheathing.

installing head flashing above wdw
We found it easier to embed the metal flashings in a bead of Prosoco’s Fast Flash. Once in position, an additional bead of Fast Flash went over the face of the flashing, ensuring a water tight connection between the metal and the Zip sheathing.

For the first layer of Rockwool we installed the pieces horizontally between studs as much as we could, knowing that the second layer of Rockwool would be oriented vertically. This alternating pattern helps to ensure seams are overlapped between layers so there aren’t any areas where the seams line up, an outcome that could undermine the thermal performance of the 2 layers of Rockwool.

z flashing nw corner
Z-flashing carried down over the exposed face of the Rockwool on the outside of the foundation walls — once installed, the gravel is pushed back so it covers the area where the flashing terminates on the face of the Rockwool. The other 3 sides of the house had much less exposure in this foundation-gravel border connection.

We didn’t worry too much about the orange plastic cap nails missing studs since they were sized to mostly end up in the Zip sheathing. In the end only a couple of them made it completely through the Zip without hitting a stud.

1st pcs rockwool going up n side
Putting up the first pieces of Rockwool on the north side.

Every so often Wojtek would come around the corner and watch what I was doing before asking questions about specific elements in the wall assembly.

orange cap nails for 1st layer rockwool
Plastic cap nails we used to attach the first layer of Rockwool. I purchased these from a local roofing supply house.

By the time I had about a quarter of the north side covered, Wojtek and Mark were ready to take over from me.

1st layer rockwool n side
First layer of Rockwool mostly complete on the north side. Before installing the bottom row of Rockwool we used shims to create a slight gap between the Rockwool and the metal Z-flashing on the foundation insulation to allow any water that ever reached the green Zip sheathing a clear pathway out.

In a pattern that would repeat itself with each layer of the remaining wall assembly, Wojtek and Mark would carefully think through the details as they progressed slowly at first, asking questions as issues arose, before getting the feel for what they were doing and eventually picking up speed as they progressed around each side of the house.

20171002_081038
Outside corner showing the Z-flashing covering the face of the Rockwool on the foundation with the first layer of Rockwool covering the Zip sheathing above.

Working through the many details with Wojtek and Mark — the majority of which occur at junctions like windows and doors, the top and bottom of the walls, along with mainly outside corners — was both collaborative and deeply gratifying. They demonstrated not only curiosity and an ability to problem solve on the fly, they also clearly wanted to do things right, both for me as a customer and for the house as a completed structure (it felt like both aesthetically and in building science terms).

1st layer rockwool at wdw buck
First layer of Rockwool meeting up with a plywood window buck. We tried to keep connections like these as tight as possible, especially since the window buck itself already represents a slight thermal bridge.

They never hurried over specific problem areas, arrogantly suggesting they knew better, instead they patiently considered unanticipated consequences, potential long-term issues, and actively questioned my assumptions in a positive way that tried to make the overall quality of the installation better. This mixture of curiosity, intelligence, and craftsmanship was a real pleasure to observe and work with.

starting 2nd layer rockwool n side
Mark and Wojtek beginning the second layer of Rockwool on the north side.

If a GC built this level of rapport with each subcontractor, I can certainly understand their refusal to work with anyone outside of their core team — it just makes life so much easier, and it makes being on the job site a lot more fun.

2nd layer rockwool at utilities
Second layer of Rockwool installed around mechanicals. Note the sill cock, or hose bibb: although it runs into the house, we left it loose so that it could be adjusted until the siding was complete — only then was it permanently soldered into place.
weaving outside corner w: 2nd layer
Weaving the seams at the outside corners to avoid undermining the thermal performance of the Rockwool.
2nd layer rockwool fastener at wdw
Close-up of the fasteners we used to attach the second layer of Rockwool.

For the second layer of Rockwool, Wojtek and Mark tried to hit only studs with the black Trufast screws. In fact, screwing into the studs with these fasteners, in effect, became a guide for accurately hitting studs with the first layer of strapping.

plates for 2nd layer rockwool

These Trufast screws and plates worked well and were easy for Wojtek and Mark to install.

trufast screw bucket
inside bucket trufast screws
The Trufast screws and plates were purchased from a local roofing supply house.
w side 2 layers rockwool
West side of the house with 2 layers of Rockwool complete.
1st layer rockwool into s side garage
First layer of Rockwool filling the gap between the house and garage framing.

If our lot had been larger, we would’ve gone with a completely detached garage, but unfortunately it just wasn’t an option.

2nd layer rockwool closing gap at garage
Second layer of Rockwool closing the gap between house and garage completely, ensuring our thermal layer is unbroken around the perimeter of the house.
nw corner 2 layers rockwool
Northwest corner of the house with the 2 layers of Rockwool installed.

It was exciting to see the house finally wrapped in its 4″ of Rockwool insulation.

Installing Battens and Creating our Rainscreen

Initially we were going to use 2 layers of 1×4 furring strips (also referred to as strapping or battens); the first layer installed vertically, attaching directly over the 2×6 framing members through the 2 layers of Rockwool and the Zip sheathing, with the second layer installed horizontally, anticipating the charred cedar that would be oriented vertically on the house.

Pro Trade Craft has many really informative videos, including this one on using a rainscreen behind siding:

Nevertheless, as the second layer of Rockwool went up, Wojtek and Mark pointed out that putting the siding in the same plane as the Rockwool/metal flashing on the basement foundation would be needlessly tricky. In other words, maintaining about a 1/8″ horizontal gap between the bottom edge of the vertical siding and the metal flashing on the foundation around the house would be nearly impossible, and any variation might prove unsightly.

As a solution, we decided to use 2×4’s for the first layer of strapping. By adding to the overall thickness of the remaining wall assembly it meant the eventual siding — now pushed slightly out and farther away from the Z-flashing covering the face of the Rockwool on the foundation — could be lowered so that visually it slightly covered what would’ve been a gap between the top of the metal flashing on the foundation insulation and the bottom edge of the siding. Wojtek and Mark also found that the 2×4’s were easier to install than the 1×4 furring strips directly over the Rockwool so that it didn’t overly compress the insulation (an easy thing to do).

Unfortunately, increasing the overall wall thickness with 2×4’s meant having to use longer Fastenmaster Headlok screws (it would also cost us later when it came to the siding on the north side of the house — more on this later). Apart from this change, the additional overall wall thickness mostly just increased the air gap in our rainscreen, which arguably just increased potential air flow while also expanding the drainage plane behind the eventual siding.

In one of the Hammer and Hand videos Sam Hagerman mentions that at least 1.5″ of screw should be embedded into the framing (excluding the thickness of the sheathing) for this type of wall assembly, but when I asked a Fastenmaster engineer about this directly he recommended a full 2″ of their screws should be embedded into the framing members in order to avoid any significant deflection over time.

As a result, we ended up using 8.5″ Headlok screws. The screws work incredibly well, requiring no pre-drilling, and they’re fun to use with an impact driver (keep your battery charger nearby). Along with the plastic cap nails and Trufast screws, I think we ended up with less than a dozen fasteners that missed the mark for the entire house — a testament to Wojtek and Mark’s skill. I was able to seal around these errant fasteners from the inside with a dab of HF Sealant.

headlok missed framing
Sealing around a Headlok screw that missed a 2×6 framing member.

During the design stage, using these longer screws prompted concerns regarding deflection, but based on this GBA article, data provided by Fastenmaster, along with some fun on-site testing, the lattice network of strapping (whether all 1×4’s or our mix of 2×4’s and 1×4’s) proved to be incredibly strong, especially when the siding material is going to be relatively light tongue and groove cedar.

For the garage, since insulation wasn’t going to cover three of the walls (only the common wall with the house was treated as part of the house wall assembly), we used significantly shorter Headlok screws for the first layer of furring strips.

monkey on furring strips
The Beast testing out the structural integrity of our strapping on the garage. Note the Cor-A-Vent strip below the bottom horizontal furring stip, helping to establish a ventilated rainscreen.
garage only 2x4s
Common wall inside the garage. Only a single layer of strapping was necessary in preparation for drywall.

Mark took the time to recess these screws to make sure they didn’t interfere with the eventual drywall.

recess 4 screws
Recessed Headlok screw on a 2×4 in the garage. Ready for drywall.

A small detail, but one of many examples showing Wojtek and Mark’s attention to detail, not to mention their ability to properly assess a situation and act appropriately without having to be told what to do.

Once the 2×4’s were all installed vertically through the structural 2×6’s as our first layer of strapping, Wojtek and Mark could install the components of the rainscreen, including the Cor-A-Vent strips at the top and bottom of the walls, as well as above and below windows and doors. In combination with the 2×4’s and the 1×4’s, this system creates a drainage plane for any water that makes its way behind the siding, while also providing a space for significant air flow, speeding up the drying time for the siding when it does get wet.

rainscreen2.jpg
Why use a rainscreen? Illustration courtesy of Hammer and Hand.

In addition to the Cor-A-Vent strips, we also added window screening at the bottom of the walls just as added insurance against insects. We noticed that on the garage, even without any insulation, the Cor-A-Vent didn’t sit perfectly flat in some areas on the Zip sheathing. Since the Rockwool on the foundation, now covered by the metal flashing, was unlikely to be perfectly level, or otherwise true, along any stretch of wall, it made sense to us to double up our protection in this way against insects getting into the bottom of our walls at this juncture.

starting 1x4s n side
1×4’s being installed horizontally on the north side in preparation for the charred cedar that will be installed vertically. Also note the Cor-A-Vent strips just above the foundation and below the window.
cor-a-vent-product-label
The main product we used to establish our ventilated rainscreen.
insect screen for rscreen
Window screen we cut to size for added insurance at the bottom of the walls around the Cor-A-Vent strips.

Wojtek and Mark also did a nice job of taking their time to shim the 1×4 layer of furring strips, thus ensuring a flat installation of the charred cedar.

shims behind 1x4s
Shims behind some of the 1×4 furring strips to ensure a flat plane for the vertical cedar siding.

This really paid off, not only making their lives easier when installing the tongue and groove cedar, but also providing aesthetic benefits in the overall look of the siding. This was especially true on the north side of the house, which has the largest area of charred siding with almost no interruptions, apart from a single window. It’s also the tallest part of the house, so without proper shimming the outcome could’ve been really ugly. Instead, once the cedar siding was installed it was impossible to tell there was 4″ of Rockwool and 2 layers of strapping between it and the Zip sheathing.

Really impressive work by Wojtek and Mark.

lking down furring behind rscreen at fdn
Looking down behind the ventilated rainscreen — 2×4, 1×4, with Cor-A-Vent and window screen at the bottom, just above the top of the foundation. This gap behind the siding provides ample air flow for the cedar siding, ensuring that the wood never remains wet for long.
rscreen furring at foundation
Strapping and rainscreen elements around a penetration near the top of the foundation.

Things got somewhat complicated around windows and doors, but once we worked through all the details for one window it made the remaining windows and doors relatively straightforward to complete.

Below you can see all the elements coming together: the window itself, the window buck covered with tapes for air and water sealing, the over-insulation for the window frame, the Cor-A-Vent strip to establish air flow below the window and behind the eventual cedar siding, along with the strapping that both establishes the air gap for the rainscreen while also providing a nailing surface for the siding.

Once most of the siding was complete around each window, but before the 1×6 charred cedar pieces used to return the siding to the window frames were installed, each window received a dedicated metal sill pan. The pan slid underneath the bottom edge of the aluminum clad window frame and then extended out just past the edge of the finished siding (I’ll include photos showing this detail in the next blog post about installing the charred cedar siding).

Here’s a JLC article discussing a couple of options for trim details in a thicker wall assembly with similar “innie” or “in-between” windows:

Window Trim

And here’s a detailed slide presentation by Bronwyn Barry regarding details like these for a Passive House wall assembly:

Sills and Thresholds – Installation Details
wdw rscreen and frame detail
The many details coming together around a window. In addition, each window eventually received a dedicated metal sill pan as a durable way to ward off water intrusion.
from int wdw rscreen and sill
Looking through an open window to the sill and the rainscreen gap at the outside edge. Note the Extoseal Encors protecting the sill of our window buck.
lking down wdw rainscreen
Outside edge of the window sill, looking down into the mesh of the Cor-A-Vent strip with daylight still visible from below.
rscreen at hd flash on wdw
Head flashing at the top of a window with doubled up Cor-A-Vent strips above it.
out corner hd flshng ready for sd
Same area, but with a 1×4 nailed across the Cor-A-Vent, creating a nailing surface for the cedar siding.

Many of the same details were repeated at the top and bottom of our two doorways. Below is a close up of the kitchen door threshold with Extoseal Encors and Cor-A-Vent again, along with additional metal flashing. Once a dedicated metal sill pan was installed (after most of the siding was installed), it felt like we did everything we could to keep water out.

kitch dr prepped 4 sd
Many of the same air and water sealing elements and rainscreen details present around the windows ended up at the top and bottom of doors as well.

In the photo below, you can see the many elements we utilized to try and prevent moisture damage around the front porch. For the door buck itself, I applied Prosoco’s Joint and Seam, both at joints in the plywood and the plywood/Zip sheathing connection, but also between the concrete and the door buck, as well as between the Rockwool and the concrete. We also kept the 2×4’s off the concrete, while also using the Cor-A-Vent strips to establish a ventilated rainscreen so that any moisture that does get behind the siding has ample opportunity to dry out in this area before it can cause any rot.

frt porch prep - rscreen water
Front porch: elements in place to try and prevent moisture damage.
west w: 2 layers battens
West facade prepped for siding.
flashing details on porch
Wojtek and Mark did a nice job with all the metal flashing details around the house — these kind of areas are the unsung heroes of a structure that manages water safely, and unfortunately go largely unnoticed by most homeowners.

In the next blog post I’ll go through the details for the top of the ventilated rainscreen when discussing how the charred cedar siding was installed.

Mark and Wojteck at front door
Mark and Wojtek installing Cor-A-Vent above the front door.

Even without the siding installed yet, it was especially rewarding to see all the underlying prep work involved in finishing our thermal layer and rainscreen come together so nicely.

Mark and Wojtek on the roof
Mark and Wojtek on the garage roof finishing up the battens for the front of the house.

Many thanks to Wojtek and Mark for executing all these details with such skill!

Blower Door (Air Sealing #9 )

4

When it was time to schedule our blower door test we considered using Eco Achievers, but we only knew about them because they’ve worked extensively on projects for our original builder, Evolutionary Home Builders. We decided the potential awkwardness, or even a possible conflict of interest, wasn’t worth pursuing their services. An example of guilt-by-association I suppose, one that is probably unfounded but, nevertheless, the strong affiliation with our original builder made it difficult for us to reach out to them for help. They also hired one of Brandon’s former employees (this employee was nothing but nice and professional towards us as we were deciding to part ways with Brandon), which would’ve only added another layer of awkwardness to the situation.

Unsure how to proceed, I looked online and found Anthony from Building Energy Experts. He was able to come out and do a blower door test for us, helping me hunt down a couple of small leaks, so that we ended up at 0.34 ACH@50 for this initial test.

Here’s a Hammer and Hand video discussing the use of a blower door:

On a side note: all of the Hammer and Hand videos, along with their Best Practices Manual, were incredibly helpful as we tried to figure out all the Passive House details related to our build. It’s no exaggeration to say that without Hammer and Hand, the Green Building Advisor website, BSC, and 475 HPBS, our build would’ve been impossible to accomplish on our own. I owe an incredible debt of gratitude to all of these great resources who invest valuable time sharing such a wealth of information.

Below is a Hammer and Hand video noting the importance of properly detailing corners to avoid air leaks:

Because of this video, I sealed all of my corners for the windows and doors like this:

HF Sealant in corners b4 blower door
Adding Pro Clima HF Sealant after completing taping of the corner, just for added insurance against potential air leakage.

I also added some HF Sealant to the lower portion of the windows, since some air leakage showed up in this area with Anthony where components of the window itself come together in a seam.

sealant on wdw components junction
Seam near bottom of window where components meet — sealed with HF Sealant.

The areas where components come together often need special attention.

close up corner and wdw components seam w: sealant
Close-up of this same area — seam in components sealed, along with the bottom corner of the window and the gap between window buck and window.

Even with layers of redundancy in place, in the picture below there was a small air leak still present at the bottom plate – sub flooring connection. A coating of HF Sealant easily blocked it.

Once the stud bays were insulated (after most of the siding was up), the interior walls would eventually be covered with Intello (I’ll cover the details in a future post on interior insulation), adding yet another layer of redundancy for mitigating potential air intrusion.

area of kitchen sill plate leakage
Area of kitchen sill plate leakage.

Anthony didn’t have any previous experience with a Passive House build, so it occurred to me that it might be beneficial to reach out to Floris from 475 High Performance Building Supply (he had already done our WUFI analysis for us), and Mike Conners from Kenwood Property Development to see if there was someone locally who did. Mike is a Passive House builder in Chicago who had already helped me out with some Rockwool insulation when we came up short earlier in our project (the two GC’s we fired repeatedly struggled with basic math), and he was very nice to take the time to answer some other technical questions for me as well.

Both, as it turned out, ended up recommending that I contact Steve Marchese from the Association for Energy Affordability.

Steve would eventually make three trips to the house, doing an initial blower door test after the structure was weather-tight and all the necessary penetrations had been made through our air barrier, a second test after exterior continuous insulation was installed, and a final test after drywall was up to ensure there hadn’t been any increase in air leakage during the final stages of construction.

Steve starting blower door test
Steve setting up the blower door for his first test.

Following Passive House principles for our build, we also followed the same protocols for the blower door tests: Blower Door Protocol

With the structure under pressure from the blower door fan, Steve and I walked around the house while he used a small smoke machine in order to try and find any leaks that I could then seal up.

Steve testing window gasket
Steve starting at the windows. Here testing a window gasket for air leakage.

The gaskets around our windows and doors proved to be some of the weakest areas in the house although, comparatively speaking, it was inconsequential since the overall air tightness of the structure was fairly robust (favorite word of architects).

Steve showing impact of unlocked window
Steve showing me the impact a window in the unlocked position can have on air tightness. The gasket, ordinarily squeezed in the locked position, works to bring the sash and the frame tightly together.
Steve smoke at family rm wdw
Looking for areas around the windows that might need adjusting or additional air sealing.

For instance, even though no substantial air leakage showed up around this kitchen door, during our first winter this same door eventually had ice form outside at the upper corner by the hinges, on the exposed surface of the gasket where the door meets the frame.

Steve at kitchen door

After figuring out how to adjust the door hinges, there was no longer any ice showing up this winter, not even during our Polar Vortex event in late January.

Much the same thing occurred around our front door as well, with the same solution — adjusting the hinges to get a tighter fit at the gasket between the door and the frame.

Steve testing attic hatch
Steve testing the attic hatch for any air leakage.

Steve was nice enough to go around and methodically check all the penetrations in the structure.

Steve testing plumbing vent in kitchen
Steve testing for air leaks around the kitchen plumbing vent and some conduit.
Steve testing for air leaks @ radon stack
Steve testing for air leaks around the radon stack.
Steve @ radon stack close up
Close-up of radon stack during smoke test.

There was one area in the guest bathroom where the Intello ended up getting slightly wrinkled in a corner during installation. With Tescon Vana and some HF Sealant I was able to address it so nothing, thankfully, showed up during the smoke test.

Steve testing wrinkled area of Intello
Steve testing area of Intello that I inadvertently wrinkled during its installation.

After looking around on the main floor, Steve moved down into the basement.

Steve testing for air leaks @ main panel
Checking for leaks at the main electrical panel.
Steve testing for air leaks @ main panel exit point
Checking for leaks at the conduit as it exits the structure.
Steve testing for air leak @ sump pit cap
Looking for air leakage around the sump pit lid.

The lids for the sump pit and the ejector pit were eventually sealed with duct seal putty and some Prosoco Air Dam.

Steve testing for air leaks @ ejector pit
Testing the ejector pit for air movement.
Steve testing for air leaks @ Zehnder exit point
Checking for air leakage around one of the Zehnder ComfoPipes as it exits the structure.
Steve testing for air leaks @ pvc:refrigerant lines
Looking for air leaks around the heat pump refrigerant lines as they exit the structure.
Steve smoke at sump discharge
Checking around the penetration for our sump pump discharge to the outside.

Before the second blower door test, I was able to add some duct seal putty to the lids of the sump and ejector pits.

ejector pump lid w: duct seal
Ejector pit lid with some duct seal putty.

Below is a copy of Steve’s blower door test results, showing the information you can expect to receive with such a report:

Final Blower Door Test Results

For the last two tests Steve used a smaller duct blaster fan in order to try and get a more precise reading for air leakage.

Steve at front door
With Steve just after the initial blower door test was complete.

Steve would be back two more times — once before drywall, and once after drywall — just to ensure we had no loss of air tightness develop in the interim stages of the build (especially after continuous exterior insulation with furring strips were installed).

Here are the final figures noting where we ended up:

0.20 ACH@50 and 106 cfm@50

We are well below Passive House requirements (both PHI and PHIUS), so there was a great sense of relief knowing that all the time and effort put into air sealing had paid off, giving us the tight shell we were looking for. Even so, it was still pretty exciting news, especially for a first build.

And here’s an interesting article by 475 HPBS regarding the debate over how air tightness is calculated for PHI vs. PHIUS projects, and the potential ramifications:

Not Airtight

Windows, Doors, and Suntuitive (Air Sealing #8)

0

Window Options For a Passive House

Even in 2017, when the majority of our build was completed, the number of Passive House quality window and door options was increasing. Today, in 2018, they’ve only continued to grow.

On a side note, the following info would also be appropriate for many Pretty Good House builds.

For example, here is an article from the Green Building Advisor website from June, 2018 discussing high-performance window options: What Windows Should I Buy?

In addition, 475 High Performance Building Supply is selling an Austrian high-performance window, Bewiso:

A New Jersey Passive House builder, Darren Macri, has created his own product line: Wythe Windows

And GO Logic is an importer of a German brand: Kneer Sud Fenstern und Turen

They have an old blog post on their site discussing their history with the brand: GO Logic

Some additional options include:

GLO windows out of Montana: https://glowindows.com/window-style/tilt-and-turn-windows/

EcoSupply Architectural Products: https://www.ecosupplycenter.com/solutions/exterior-solutions/windows-and-doors/windows/

Mavrik: https://www.mavrik.build/materials-1

Zola, in particular their uPVC options: https://www.zolawindows.com/upvc#Slide1

European Architectural Supply (Schüco brand): https://www.eas-usa.com/

Alpen Windows

Klearwall (Munster Joinery, based in Ireland)

Bieber: https://bieberusa.com/why-us/12-reasons/

There are also some custom, small-scale, American-made options as well:

Hammer and Hand

HH Windows

And it’s worth doing an internet search looking for suppliers in your specific area. In our case, Hawkeye Windows and Doors is fairly close, located in Iowa. As I relate towards the end of this blog post, Larry, the owner, really helped me out of a jam when the salesperson for our windows and doors proved incompetent and, frankly, useless. In fact, when a reader of this blog contacted me recently (2020), I had this to say about Larry: “He proved incredibly helpful and responsive. If I was building again, or building for someone else, I would definitely get a quote from him. The real value in working with someone like Larry is that he’s close enough geographically to be willing to travel and do the install with his crew (Midwest region)… in addition to being readily available should any issues develop after installation.”

They all share similar characteristics, including insulated triple pane glass, thermally broken sashes and frames, multi-point locking systems for airtight seals against gaskets on the frames, the European-style tilt-turn function, and the seemingly ubiquitous but beautiful Roto hardware.

It’s nice to see that more options are becoming available to those looking for high-performance windows in the US — hopefully this means a long-term movement towards better overall building standards in terms of quality, durability, and performance.

And here’s a quick overview on high-performance builds and the need for quality windows and doors: Hammer and Hand

Although not everyone is entirely convinced, and there’s still debate regarding exactly what’s “necessary” in terms of performance (the exception would be building to the Passive House standard, either PHIUS or PHI, where the requirements are more black and white). There’s a lot more latitude if building a Pretty Good House, or the homeowner is only looking to meet the benchmark of Net Zero.

Suntuitive Dynamic Glass for Our West-Facing Windows

When my wife’s cousin found out we were trying to build a high-performance new home (a mix of Passive House and Pretty Good House), he suggested we incorporate his company’s self-tinting glass. Used largely in commercial applications since its introduction, the product is beginning to make inroads into the residential market as the cost comes down: Suntuitive

For anyone near the northwest suburbs of Chicago, you can see the glass in person at the Ziegler Maserati dealership in Schaumburg, Illinois: Exterior View

As the product has continued to evolve, they’ve been able to remove much of the “green” look to the glass. This is evident in the Ziegler dealership glass, but even in that application I didn’t think that it was all that prominent. The overall look of the glass was still impressive.

As to function, the Suntuitive coating between the layers of glass adjusts its level of tint based on the temperature of an inner layer. In the summer, this has obvious benefits when high temperatures combine with glaring sun to enter a structure, particularly in the east in the morning or the west in the afternoon (even to the south without some protection with overhangs). But the really nice thing about the product is that it doesn’t tint on the coldest days in winter, allowing for some solar heat gain and natural daylight exactly when you want it most on sunny, wintry days.

For energy reasons, and also personal aesthetic choices, we decided to forego any windows on the east side of our house. Instead, we just have our front door facing the street (it has a limited amount of privacy glass to let in some morning light). On the other hand, because we wanted to use a significant amount of glass on the west side, which faces our backyard, and we knew overhangs couldn’t offer much relief from the summer afternoon sun, Suntuitive was a great solution for us — especially since we wanted to avoid using blinds or curtains as much as possible.

Following Passive House principles for glazing, we wanted to optimize our views and connection to the outside through our limited and strategically placed number of windows.

Here’s a useful video showing the effects the sun can have on a structure in various seasons:

And here’s an interesting video discussing the challenges associated with managing both solar orientation and scenic views when they’re in conflict:

For our house, we only have a single window to the north (for my daughter’s bedroom), while the majority of our windows are on the south side, where we spend most of our time in the living spaces (open kitchen and family room). In effect, we’ve limited our windows in private areas of the house, mainly two bathrooms. Besides energy concerns, we didn’t think it made sense to add additional glass to our north, mainly because our neighbor’s house blocks any meaningful views while also reducing privacy.

Additionally, we have a significant overhang on the south side, which allows us to block out most of the summer sun while allowing in plenty of winter sun for passive solar heating during our coldest months, so the windows on the southern facade easily take care of most of our daylighting needs.

By utilizing the Suntuitive glass on only the west-facing windows (family room and master bedroom) it allows us to maintain our open view of the backyard while avoiding migraine-inducing summer afternoon sun.

Here are the specs for the particular glass we chose to use (they have a wide variety of options, including color variations): Vertical CrystalGray Triple Glaze Performance Sheet – Lee-Whetzel

Although we lose some potential solar heat gain through these windows in winter (compared to the glass in a typical Passive House certified window), we feel it’s more than compensated for by the blocking of hot, bright summer afternoon sun.

Here’s a company video describing the Suntuitive product in real world applications:

Unilux Windows and Doors

My wife’s cousin suggested a couple of options for the Suntuitive glass: Kolbe Windows or Unilux Windows.

We went to see the Kolbe windows in a local showroom, but they didn’t seem impressive. It also didn’t help that the salesperson was dismissive of the product, suggesting that if we were considering Kolbe we should just use Marvin instead (another brand they sold). The salesperson literally had to wander around looking for a sample unit, eventually finding one buried in a corner. We’re not even sure if what we saw represented the full breadth of the Kolbe product line.

At any rate, since Unilux was willing to work with the Suntuitive glazing, it made it easy to go with them rather than trying to convince another Passive House certified window maker that Suntuitive could be compatible with their product line.

[Note: Suntuitive is constantly adding new manufacturers willing to work with their product, so contact them directly if you have a specific brand you’d like to use on your own project.]

After deciding to go with the Unilux windows and doors, we ended up with the following specs:

[Please note: The numbers below were mostly supplied to me by my Unilux window rep. Following up with a Unilux rep on the East Cost, Scott Gibson, from Green Building Advisor, received different information. If you’re contemplating using Unilux, contact your local rep or the company directly in Germany for written confirmation regarding performance numbers — especially if you’re running data through a program like PHPP.]

Main Floor Windows (excludes west-facing windows with Suntuitive):

  • Interior wood with aluminum-clad exteriors
  • Glass: Unilux Super-Thermo 3
    • Triple pane with a reported R-ll center of glass
      • R-8 for whole window once frames are included
  • U-factor of 0.18
  • SHGC of 0.53

2-Basement Windows:

  • Isostar: interior uPVC with exterior aluminum-clad
  • The same glass as the main floor windows.

Two doors:

  • One for our front entry, and one for our kitchen. They both have the R-11 center of glass glazing, with the kitchen door having a significant amount of privacy glass (it faces south), which is really enjoyable on cold days with the sun shining.

We chose PVC for the basement windows to save some money, but also because we thought the natural wood finish on a basement window might look out of place — we’re painting the concrete foundation walls, and partially drywalling an office area, but otherwise we’re leaving the basement unfinished (it will look finished for our tastes at any rate).

The total cost for the windows and doors was just over $26,000 (including the Suntuitive for the windows facing west), with the two doors representing almost $10,000 of this total.

In regards to the Suntuitive glass, it is currently selling for roughly $31/sq. ft., depending on specific application requirements. You can contact my wife’s cousin, Dan, at his email address if you have technical questions, or if you’d like to get a quote for your own project: leed@pleotint.com

I don’t believe the Unilux windows and doors are technically certified by PHIUS or PHI, but their performance metrics are close to the necessary requirements, so we were comfortable using them, especially since we had no intention of pursuing official Passive House certification anyway.

Window Bucks

After firing our two GC’s in February, 2017, we lost a few weeks as we scrambled to cut ties with them while simultaneously lining up new subcontractors to keep the project moving forward.

Once things were back on track, I was able to begin installing the window and door bucks in preparation for the delivery of the eventual windows and doors.

Using 3/4″ CDX exterior plywood, I installed the bucks so they would extend out far enough to meet up with our eventual two layers of 2″ Rockwool Comfortboard 80 and two layers of furring strips for our ventilated rainscreen (vertical and horizontal since most of our charred cedar siding would be oriented vertically).

Here’s how a similar set-up looked on Hammer and Hand’s Madrona House project:

We decided to go with “innie” windows, so our windows would be placed near the center of our wall assembly to optimize their energy performance. Placing windows near the center of the wall assembly also creates nice shadow lines on the structure throughout the day. Overall, we just really like the way recessed windows look on a house.

Prior to construction, I created a mock wall assembly with a window buck, which proved to be good practice for building the real thing.

mock-wall-assembly-w-sealant-in-sun
Mock-up of the wall assembly put together before construction began.

Mock wall assembly after practicing with the tapes:

mock-wall-assembly-w-tapes
This mock wall assembly gave me the chance to practice applying these tapes before doing it for real on the house.

It’s also worth mentioning that it’s important with these tapes to make sure that once applied you go over them, applying pressure, to ensure the adhesive is properly activated. 475 HPBS always included at least one of their blue Pressfix tools in each box of tape that I ordered. The tool is roughly similar to a bondo spreader.

pro-clima-pressfix.jpg
Pressfix after heavy use.

We were following many of the details in Hammer and Hand’s Madrona House project:

I watched their videos dozens of times, especially this one, trying to make sure I got all of the details right. Their Best Practices Manual was also invaluable as I kept referring to it throughout the duration of the build (an incredible gift to contractors and self-builders alike who are tackling a high-performance build for the first time).

Once each buck was installed, I went around and used HF Sealant to seal all the gaps, seams, and screw holes in the window and door bucks.

BR #2 window buck with HF sealant
First window buck installed.

Here’s a close-up of the same window as the HF sealant is being applied:

close up of BR #2 with HF sealant
HF Sealant at the transition between the Zip sheathing and the window buck.

And here’s a different buck being sealed on the interior surfaces:

lwr rgt int wdw buck w: hf sealant
Using HF sealant to seal seams, imperfections, and screw holes in the plywood window bucks.

Another view of the buck being sealed up with the HF sealant:

int wdw buck w: hf sealant

With the bucks installed, I could then begin applying the various air sealing tapes to all the surfaces of the bucks. I decided to use the Pro Clima line of products, available from 475 HPBS, after ordering them and using them to create my mock wall assembly.

The other option would’ve been to use the Siga brand of air sealing tapes, available from Small Planet Supply, or the black Huber Zip sheathing tape.

Although clearly based on my own personal prejudice rather than scientific evidence, I was reluctant to use the Zip tape, 3M tape, or something similar, mainly because I knew the European brands have a much longer track record of success.

Yet another option would’ve been to use liquid applied membranes (e.g., Prosoco, again Zip, or others), which I’ll address later, when noting the details for sealing up my front door buck area.

Knowing that corners and other areas where elements meet up could be problematic for proper air sealing, as pointed out by Sam Hagerman in this Hammer and Hand video:

I started by addressing some of these areas first. For example, here’s the lower right of a window buck where it meets the Zip sheathing:

lowr rgt buck 1st profil at zip

By building up the corners in this way I was hoping to guarantee complete coverage against air and water infiltration at these tricky points.

lower rgt buck w: profil at zip
Same area with overlapping top layer.

Here’s the top of the buck where it meets up with the Zip sheathing:

profil on buck meeting zip
Corner where the buck meets the Zip protected again with 2 separate overlapping pieces of tape.

The Profil tape, which splits into thirds on the back, makes corners much easier to tackle.

After using the Tescon Vana in the upper inside corner of the buck, I used the Profil tape to address the upper outside corners of the bucks:

int buck w: tvana and 1st profil
Tescon Vana, then Profil for this upper outside corner.

Here’s two views of the second top piece for this area:

outside upper rgt w: profil
Putting it in place before making a small cut to fold over the outside edge.

Here’s another view of the same area, this time looking at the buck head-on:

upper rgt of wdw buck w: profil
Same area after cutting the piece and ready to fold it down into position.

By making small cuts in the Profil tape with a razor blade, corners are easy to shape to the form you need. Although making a cut while the tape is already in position is relatively easy to do, avoiding any damage to underlying layers is obviously very important. For this reason, it’s probably safer to make cuts before getting the tape into position.

For instance, an initial cut in the Profil tape:

cutting profil for corner

And then making a fold to establish the basic shape for an outside corner:

cut folded profil for outside corner

Once you initially set the tape in its position, gently remove the white backing paper, trying to avoid moving the tape too much, which would change its position or cause wrinkles.

I didn’t use the Profil tape for the two lower outside corners since these areas would eventually get throughly covered by the Extoseal Encors sill pan tape.

Once the corners were taped up, I moved on to the bottom of the buck, using the black Contega Solido Exo tape.

First piece of Contega being applied to the bottom of a buck where it meets the Zip sheathing:

contega lower lft corner

The same area once the piece of Contega is cut to allow it to partially wrap up the side of the buck:

contega under and up side
First piece of Contega being installed.

Note the white paper backing that helps to position the Contega exactly where you need it, while also reducing the chances for wrinkles to form (an area for potential air leaks).

The Contega, like the light blue Profil, comes with a 3-part split backing. Although this 3-part backing helps a lot, I still struggled at times to avoid wrinkles with the Contega. The Contega is noticeably thinner than the blue Tescon Vana, which is probably why I found the Tescon Vana much easier to use. In fact, if I had it to do over, I would just use a wider version of the Tescon Vana to replace the Contega.

The nice thing about the wider versions of the Tescon Vana is it also comes with a split back for ease of placement:

tescon vana 6 w: split backing
6″ Tescon Vana with split backing.

Once an initial piece of Tescon Vana (3″) covered the exposed front outside edge of the plywood, I applied the wider Tescon Vana (6″), before applying the Contega to the Zip – buck – bottom piece of Contega connection, effectively bringing these adjoining areas together.

starting contega up lft sde buck
Second piece of Contega going up the side of the window buck.

Getting the first third of the Contega attached to the Zip before removing the remaining 2 strips of white paper backing seemed to help get it to sit flat without too many wrinkles.

contega up lft sde of buck pulling strip
Removing the smallest of the 3 strips of white paper backing.

The Contega was then cut so that it lapped the first piece of Contega on the bottom of the window buck.

And here is the Contega as it ends up on the top of the window buck:

close up contega up over top of buck
Corners being covered multiple times: HF sealant, Profil tape, and then Contega tape.

Making progress across the top of the window buck, building up the layers in shingle fashion — first with the Tescon Vana on the exposed front edge of the plywood, then moving up with the Contega, before finishing with a final strip of Tescon Vana on the Zip sheathing:

progressing across top of buck
Moving across the top of the window buck.

Top of the window buck almost complete:

upper lft buck w: top pce of contega

Same area finished off with a strip of Tescon Vana:

head of wdw buck finished w: t vana

Here’s a side view of a completed window buck. Note the sloped top, achieved with a piece of beveled cedar siding. Hopefully water won’t make its way to this area above each window or door (it’ll have to get past 4″ of Rockwool), but the slope that’s present will hopefully encourage any water that does so to harmlessly drip off rather than hang around to cause potential damage.

prepped wdw buck w: sloped top

Once the exterior of the window bucks were complete, I went inside to cover the interior head and legs of each buck.

contega interior of buck
Contega on the top and sides of the interior of each buck.

Here’s a Siga video I only recently came across, showing another way to deal with corners:

The last area to be addressed was the window sills. For this area I used the Extoseal Encors product. It’s vapor-closed, highly pliable, but also thick to prevent any water that ends up on the sill from entering the structure.

I really enjoyed using the Extoseal Encors, although you do need to avoid thinning it out as you wrap it around outside corners.

The only time I had a problem with it was on my last window buck. Temperatures were rising and I was working in direct sunlight. It was only in the high 60’s, but that was enough to cause some bubbling in the material.

extoseal bubble in sun
Some bubbles caused by working in the sun.

In my experience, the Extoseal Encors performed at its best the colder it was outside.

window buck almost complete
After a second row of overlapping Extoseal Encors on the sill to the interior, this window buck would be complete.

Door Bucks

Once the window bucks were installed, I could move on to the two door bucks (front entry and side kitchen entry).

legs of kitch buck installed
Installing the door buck for the side, kitchen door.

Plywood portion of the door buck complete with bottom piece installed:

kitch dr buck looking down at plywood
Looking down at completed plywood door buck.

Note the small voids in the plywood pictured below. Because of gaps like these, I chose to cover the edge grain of all the plywood window and door bucks with the HF sealant before applying tapes, just to ensure no air could migrate through the layers of plywood.

lwr rgt door buck w: plywood
Outside corner of door buck.

After completing the plywood door buck, it was time to give it support from underneath. Although about 2/3 of the door would rest on the subfloor/floor joists, leaving that remaining 1/3 unsupported made me nervous.

While there’s plenty of information available regarding the use of window bucks, I found surprisingly little regarding the installation and weather-proofing of door bucks. I couldn’t find any information for this detail in my Passive House books, or any description of it online, so I consulted with a local GC to come up with a solution.

As an aside, Rick, from Cypress Builders in Palatine, Illinois, proved to be an invaluable resource for a whole host of design problems and issues during our build. After firing our two GC’s, he was kind enough to take on the role of building consultant: Every couple of weeks I would come up with a list of questions, and he would stop by the job site to run through answers and possible solutions.

To his credit, the level of detail involved in a Passive House build didn’t scare him off — it did for many of the other GC’s, carpenters, and siding companies I had out to the job site for estimates — none more blunt than one particular carpenter who could only shake his head over and over as I went through the components of our wall assembly before finally blurting out in frustration: “Why the fuck would anybody build this way”. It’s funny now, but it wasn’t at the time when I was struggling to line up subcontractors in order to try and finish the project.

Rick was incredibly generous with his time, knowledge, and experience — it’s no overstatement to say it’s doubtful we would’ve completed our build without him. His decades in the building industry allowed him to offer sage advice, and I always ended up calmer and more confident about completing the next stage of the build after each of his site visits. I would definitely recommend him to anyone in the Chicago suburbs looking to build or remodel (the mix of experience, honesty, and excellent communication skills is hard to find).

And for any other DIY self-builds, I can’t recommend strongly enough how important it is to look for a similar mentor for your own project. Even if things are going well, whether in the design stage or even the actual build, it can’t hurt to have a construction veteran stop by and try to spot problems, or potential problems. A second set of eyes, eyes that have seen decades of construction acumen along with plenty of stupidity, can only improve the quality of your own build. As invaluable as online resources like GBA, BSC, and Hammer and Hand have been to our build, none of those resources could visit our job site directly, so someone like Rick helped to complete the circle of advice and knowledge that can make the difference between a successful build and total disaster.

To try and give the door buck structural support, I first installed a layer of Rockwool against the green Zip sheathing directly underneath the door buck, attaching it initially with some construction adhesive. I was hoping this would act like the foam in an insulated header.

rockwool for under door buck
Prepping the Rockwool for the door buck.

After the Rockwool (2″ Comfortboard 80), I attached two 2×8’s with eight Headlok screws through the Zip, rim joist, and some of the floor joists as well.

We would eventually use these screws extensively to attach our first layer of furring strips through two layers of 2″ Rockwool Comfortboard 80 and our Zip sheathing (again, more on this later). I also used their 4 1/2″ screw to correct a couple of window headers that were out of square. With the spider drive, they work incredibly well.

Unfortunately, when installing the two 2×8’s I accidentally compressed the Rockwool slightly, requiring a final layer of 1/4″ plywood. Thankfully I was able to avoid compressing the Rockwool for my front door buck, so the 1/4″ plywood wasn’t necessary.

kitch buck w: 1:4 plywood
Layers of support underneath the door buck. The Rockwool is intended to act as a thermal break, much like foam in an insulated header.

Another view of the door buck with basic components installed:

kitch buck w: plywood installed
Note the visible gap between the bottom of the buck and the Rockwool on the foundation below. This gap was closed with additional pieces of Rockwool cut to fit.

Because of the Rockwool, sealing the end grain of the 2×8’s would’ve been difficult with only the tapes, so I first applied the HF Sealant to try and create a monolithic surface:

Side Door - built out w: sealant
HF Sealant covering the Rockwool and the end grain of the 2×8’s. Additional Roxul installed between the buck and the Roxul on the exterior of our foundation to close this gap.

If I had it to do over, I’d use Prosoco’s Fast Flash since, unlike the HF Sealant, it’s vapor open, so probably a better long-term solution should moisture of any kind find its way to this area. Once the HF Sealant was dry, it was straightforward to apply the Extoseal Encors.

But before applying the Extoseal Encors, I applied the tapes in the same pattern and manner as I did for all the window bucks.

I also added additional layers of Rockwool and a final layer of pink rigid foam to bring everything out to the same plane before installing the Extoseal Encors.

taping side of door buck - south side
Applying the tapes to the kitchen door buck.
lwr rigt kitch buck w: foam and extoseal
Extoseal Encors across the  bottom face of the door buck.

Also, in addition to the Extoseal Encors across the face of the pink foam, the concrete sub later applied a layer of EPDM rubber to try and prevent moisture intrusion/damage in this area.

lwr lft kitch dr buck w: first row extoseal
Second row of Extoseal Encors, wrapping down over the first.

Although the Extoseal Encors looks great when it first goes on, once temperatures rise it becomes gooey in the sun, so it was a challenge to maintain its integrity before the door went in. If I could do it over, I would hold off on installing the Extoseal Encors until the day before, or the morning of, the door’s installation.

lower lft kitch dr buck w: extoseal
From outside, looking down on the bottom left corner of the door buck: last piece of Extoseal Encors installed.

From outside, a close-up of the right outside corner of the door buck:

lower rgt kitch dr buck w: extoseal
Extoseal Encors wrapped around the outside corner of our kitchen door buck.

And a view of the completed door buck:

kitch door buck w: extoseal installed
Ready for the kitchen door.

For the front entry door buck I repeated the same assembly of components (minus the 1/4″ plywood and pink rigid foam), the only major change a switch to Prosoco’s R-Guard series of products; namely their Joint and Seam and Fast Flash, replacing the Pro Clima tapes and HF Sealant.

Before the start of construction, I intended to use the Prosoco products for all the air and water sealing details, but when it looked like construction would happen in the winter of 2016-17 I knew I had to change to tapes since most of them can be applied below 20° F (this includes the HF sealant), while the R-Guard series of products can only be applied in above-freezing temperatures (you’ll want to contact the manufacturers for exact installation directions and requirements).

Since it was August by the time I did the front door buck, I decided to try the Prosoco products just so I could compare them to the European-style tapes I had been using. I was able to find the R-Guard series of products online at World Class Supply.

frt dr buck looking down j and seam
Lower left corner of front door buck. Pink Joint and Seam on the bottom, red Fast Flash running up the leg of the door buck.

Exterior head and legs of the door buck covered in Joint and Seam and Fast Flash:

lft ext side of frt dr buck w: fast flash

Upper right corner of the front door buck after applying Joint and Seam and Fast Flash:

upper rgt frt dr buck w: fast flash

Lower left outside view of the front door buck after Rockwool, 2-2×8’s, Joint and Seam, and Fast Flash have been installed and applied:

front door lower left w: fast flash

There were a few gaps between the Rockwool and other components around the house where the Joint and Seam seemed to work surprisingly well as a sealant. Even though the Rockwool is fibrous, the Joint and Seam was still able to stick tenaciously — hopefully it continues to work in the long-term.

And here’s a couple more pics of the completed door buck, ready for the front door:

front door entry low shot of fast flash
Completed bottom section of front entry door buck.

Standing indoors, looking down at the right corner of the front entry door buck:

front door entry w: fast flash
Fast Flash around the perimeter of the front door buck.

As things turned out, this front door buck would end up exposed to construction foot traffic and the elements for about 4 months. Having a cheap, temporary front door helped to keep most of the rain out, but even so, the Fast Flash held up surprisingly well. Apart from a couple of tiny touch-ups with additional Fast Flash just prior to the front door being installed, there was little damage to the membrane.

And once the house was done, most people when entering or exiting skip the metal flashing and the door’s threshold (the area I was trying to give added support), preferring to step directly from the concrete stoop into the house and onto the tile since it feels more natural, but it’s nice to know that if these areas ever do see serious weight (e.g. moving heavy appliances or furniture) that it’s fully supported.

Just recently I had time to look through William Maclay’s book The New Net Zero, a fantastic resource I would’ve loved to have before and during our build, and I noticed in a diagram on page 343 the use of a (4″ x 4″) piece of fiberglass angle: “… fasten to rim joist to support extension of floor at door opening”.

If I could do it over, I would use the fiberglass angle instead of the two 2×8’s. Last winter we had a cold spell for about two weeks where temperatures stayed in single digits, and although I checked behind my Rockwool in the basement just below my two door openings at the rim joists for any signs of moisture issues and found nothing (luckily), the fiberglass angle seems like a much simpler solution since it’s thermally broken and much smaller than my two 2×8’s, which would’ve meant I could’ve almost completely insulated below the door bucks while also giving this area plenty of long-term structural support.

Of course, consulting a structural engineer or architect wouldn’t hurt either, just to establish exactly what’s required for tackling this area.

For anyone who’s interested, I found the following suppliers for fiberglass angle online:

Grainger
Strongwell

Air Sealing Products: Tapes or Liquid Membranes?

In regards to air sealing, I was really impressed with the Pro Clima series of tapes and their HF Sealant. I was equally impressed with the Prosoco R-Guard series of products (Joint and Seam, Fast Flash, and Air Dam).

Because I found the Prosoco series of products slightly easier to use since they’re less fussy to apply, I would choose tapes or liquid membranes based on the weather conditions of the job site: If it’s going to be too cold to use the Prosoco, then I would use the tapes (and the HF Sealant). Otherwise, I’d probably stick to the liquid membranes. I’m guessing the choice typically comes down to personal preference of the installers (apart from weather restrictions), or what the architect specifies on the drawings.

Here are some videos showing various liquid membranes in action:

And there are now other copycat products available:

And 475 HPBS and Pro Clima now offer their own version of a liquid applied membrane:

VISCONN

Completing Air and Water Sealing of the Windows and Doors (Interior)

Our Unilux sales rep was nice enough to arrange for Bob Riggs and his crew to come down from Wisconsin to install all of our windows and doors. After firing our two GC’s, we really didn’t know who to use for the install. Not many contractors in the Chicago area have experience with these type of windows and doors, so it was hardly straightforward to find someone.

We had ordered our windows in September, 2016, we had fired our GC’s in February, 2017, and we were finally able to install our windows June, 2017. It had been a long wait, so we were excited and nervous to watch them go in. Familiar with Germany’s reputation for engineering excellence, it was one of the more exciting aspects of the build.

guys putting in kitchen window
Kellum, Tony, Bob Riggs, and his son Brian placing our kitchen window frame.

Bob and his crew did a great job for us. We’re lucky and extremely thankful that they were willing to come down to help us out of a jam. And the guys they used from JPK Builders to help them with the install were also extremely professional and easy to work with (more on this below).

As far as installation details, for the most part the guys followed the steps outlined in this Hammer and Hand video, only changing the Tremco illbruck tape for Hannoband 3E tape:

I chose to go with the Hannoband 3E tape, but there are any number of options for air and water sealing around windows and doors:

Here’s a video detailing the use of the Hannoband 3E black expanding foam tape, which I purchased from Small Planet Supply:

The Hannoband tape has some nice characteristics, such as adding some R-value to the gap, it’s water and air tight, but it’s also vapor-open. It’s also easy to work with and install, it performs really well, and using it means not having to fill the gap between window and framing with canned spray foam (prone to failure according to some Passive House designers and builders). Overall, it just seems like an elegant solution for air and water sealing what can otherwise be a difficult gap to deal with.

Here’s a short video from Tremco showing how these expanding black foam tapes work:

And here’s a photo of the Hannoband 3E, dramatically showing just how much expansion it’s capable of if left unimpeded:

Hannoband 3E showing expansion
On the left, Hannoband just cut from the roll of foam tape. On the right, Hannoband after 48 hours of unimpeded expansion.

It also comes in different sizes to better match the gap that needs filling.

The photo below was taken shortly after installation, before the foam had a chance to fully expand.

upper rgt wdw fr blk foam b4 expanding
Upper right corner of a window with the Hannoband 3E tape.

Here’s a similar corner after the foam has had time to completely expand. The HF Sealant in the corner is just added insurance against air leaks.

upper left int wdw frame w: blk foam
Hannoband 3E tape fully expanded.

It was pretty impressive to see gaps like this on the day of installation:

hannoband-tape-before-full-expansion.jpg
Daylight coming in right after the installation.

Only to come back the next day to find the gap completely closed by the expanding foam tape:

lft side wdw frame gap filled w: blk foam
The gap is completely closed the next day.

I put the Hannoband on ice the morning of the installation since the cold is said to slow down the rate of expansion, giving installers plenty of time to set windows and doors.

A closer view of the Hannoband 3E tape fully expanded between the window buck on the left, and the window frame on the right:

lft side of frame close up blk foam

A closer view of the upper left corner of one of the windows after the Hannoband has had a chance to fully expand:

upper left corner of window w: Hanno tape and HF but before Profil

The tapes aren’t cheap, but I thought they were worth every penny.

For the bottom of the window, it wasn’t really clear if the Hannoband tape was appropriate for this area, so I followed Hammer and Hand’s lead, using backer rod to fill the bottom gap before applying HF Sealant (instead of Air Dam like in their video).

bottom of int wdw frame w: backer rod
Backer rod being installed into the bottom gap under the window from inside.

Lower left corner of the window after the Hannoband tape, backer rod, and HF sealant have been installed.

lower lft int wdw frame w: dab of HF
Interior lower left corner of a window after the Hannoband tape, but before the Profil tape has been applied. 

Later, for the basement windows, when I had the Prosoco R-Guard series of products on hand, I completely sealed the interior side of the two windows with the Air Dam product, which worked really well. I also used the Air Dam to seal the connection between my basement slab – rigid foam – and foundation walls. It worked really well in that application as well.

lower ft int base wdw installed
Basement window before the white Air Dam has been applied between the buck and the window frame.

Once the Hannoband tape had a chance to completely expand (roughly 48 hours), I proceeded to tape the perimeter of the windows and kitchen door, both from the interior and the exterior. This included the exterior sills (a common air sealing technique for European windows; considered a big no-no for American-style windows).

Unfortunately, when I was outside, before applying the Profil tape across the bottom of each window, I forgot to stuff in some Roxul Comfortboard 80 (as suggested in the Hammer and Hand video above). I only realized this misstep after reviewing photos for this blog post. Worried about potential negative consequences, I asked a question on the Q&A section of GBA, and I also contacted Floris at 475 HPBS. Although this roughly 1/8″ tall gap is an unnecessary thermal bridge (thanks to my mistake), it shouldn’t impact the long-term durability of the windows or the bucks.

I rented a FLIR thermal imaging camera to check this area, and to just see how the overall structure of the house has turned out in terms of air sealing and insulation (we moved in this past Spring, 2018). Unsurprisingly, the space between the window frames and the bucks/drywall is one of the weakest areas on the entire house. Fortunately, the sills don’t show up any colder than the rest of the frame (I’ll delve more into this in a later post, including some FLIR images from around the house, after detailing the installation of our exterior insulation and siding).

For the front door, we held off on installing it until later in the build in order to protect it from the construction process as much as possible.

close up lower lft wdw finished w: HF sealant
Interior view of the gap between buck and window frame taped with Pro Clima Profil tape.

Using the Profil tape for this made the process a lot easier. With its 3-part split backing, I could use the narrowest section on the window frame. It was important not to get too much tape on the frame in order to avoid interfering with final trim details (in our case, drywall returns).

On the exterior I tried using the Tescon Vana initially, thinking the gap was wide enough between frame and buck, but the Profil tape was simply much easier to use in tight spaces.

rgt side ext wdw frame finished w: tvana
Left to right: exterior gray window frame, Tescon Vana, and tape-covered window buck.

I added a little HF Sealant to all the corners just for added protection against air leaks and water intrusion.

taping ext of family rm window frame
Applying the Profil tape to an exterior frame.

From the outside in we had Profil tape, the Hannoband tape, and then another layer of Profil tape on the interior. Doing it this way involved some time and money, but I thought it was worth it to protect against air and water infiltration for the long-term. I would also only have one chance to get these details right, so some added redundancy also meant added peace of mind.

upper lft int buck corner finished w: hf sealant
Another view of a window completely taped and sealed in an upper left corner.

I also addressed the brackets on the top of the windows with a mix of HF sealant and tape after the Hannoband had fully expanded:

clip above window before Profil #2
First HF sealant applied around the bracket.
clip above window w: Profil
After the HF sealant, the Profil tape is applied.

Over-insulating High-Performance Window Frames

When the window bucks were made air and water tight, I took the advice of Hammer and Hand and over-insulated the exterior frames with rigid foam:

I wanted to use Roxul for this application, but it would’ve taken too much time to order and deliver to site (roughly 2 weeks), and the foam was frankly cheaper and readily available at Home Depot. We tried to go “foam-free” as much as possible, but this was an area where we made a compromise — insulated headers and the gap between our basement slab and foundation walls were the two other areas where rigid foam was used to any great extent.

The exterior aluminum cladding had been held back 1″ from the edge of the wood window frame, allowing me to install 1.5″ of foam between the edge of the aluminum cladding and the window buck (the 1/2″ gap around the perimeter of the window buck opening allowing for proper placement of each window).

over insulated frames
Over-insulating the window frame.

For the most part this went well, but there were some areas where the interior 1/2″ thick piece of foam did overlap the aluminum frame slightly. As Speier points out in the video, this probably short circuits the intended thermal break somewhat, but by how much I don’t really know (hopefully not entirely).

Also, even if over-insulating the window frames is executed perfectly, it still leaves the window bucks themselves as thermal bridges. I’m sure these show up in the PHPP (the Passive House Planning Package) used for energy modeling, but I’m guessing the energy penalty is slight.

Instead of using 3/4″ plywood or 2x framing lumber to create window bucks, some builders, trying to avoid this area of thermal bridging, have used Thermalbucks as an alternative, but depending on the thickness of the wall assembly there may be limits to their use.

Another view of the over-insulated frame:

lower lft wdw buck w: foam on frame

I’ll add additional photos of the windows and doors to a later blog post discussing exterior insulation, the ventilated rainscreen, flashing details, and our siding.

kitch dr from int w: sun
Kitchen door installed.

Issues Arise with our Unilux Sales Representative

The biggest disappointment regarding our new windows and doors was the behavior of our Unilux sales rep.

For instance, when Riggs and his crew were ready to set the first window in place we realized the integrated window sills were going to be way too short (the Unilux sills ship separately and need to be screwed to the front of each window unit). Our Unilux rep immediately suggested moving the windows farther out, near the outside edge of the bucks, in order to make these shorter sills work.

There are a couple of reasons why this was infuriating. First, and most importantly, it would’ve undermined the integrity of the windows since they would’ve been resting solely on the 3/4″ plywood window bucks, rather than the 2×6 framing (the units were heavy, especially our family room and master bedroom windows, which were each 9′ wide and 4′ tall). Secondly, his suggestion immediately told me he had not bothered to look at the construction drawings and Hammer and Hand videos I had emailed to him so he could order the proper sized sills and better understand the wall assembly the windows were going into. The drawings clearly note the proper placement for the windows, and I had explicitly noted this desired mid-wall position in an email.

Luckily, before I could say anything, Tony, one of the carpenters, spoke up and pointed out that the windows needed to be screwed into the 2×6 framing members. I can’t tell you how grateful I was that he had the courage to speak up (in my experience, most people wouldn’t).

The guys also pointed out that I could have custom sills made and then installed during the siding process. Not the end of the world. Sounds good.

suntuitive in crate
Suntuitive glass delivered in a crate. For our application it needed to be installed into two empty Unilux frames on site.

Later, our Unilux rep was leading Riggs and the guys through the process of installing the Suntuitive glass in the empty west-facing window frames. The guys seemed visibly nervous, and understandably so, as our Unilux rep led them through the process for the first time.

Once the Suntuitive glass was installed, the guys broke for lunch. The Unilux rep then pointed out to me when we were alone that of the 6 pieces of glass 4 of them had the Suntuitive glass logo installed upside down. He shrugged and smirked, perhaps suggesting that it was the carpenters’ fault, or that it was no big deal.

Fair enough, I guess, since it doesn’t impact performance but boy, does it look dumb.

Suntuitive upside down

Instead of taking a few extra seconds with each piece of glass to make sure that it had the proper orientation, our Unilux rep either forgot to do this, or he just didn’t care. It was hardly the carpenters’ fault since they had never installed Suntuitive glass before.

Still later in the day, when it came time to start installing handles, rather than having what I had ordered on site, our Unilux rep had a cardboard box filled with random handles of various styles: “Is this yours?” “No.” “Is this one yours?” “No.” He only had 2 of the correct handles out of 9. At the very least, this gave the impression that our Unilux rep was disorganized. It turned out he was missing all of the drip caps as well.

Near the end of the first day of installation the guys started installing the kitchen door. Once in place, our Unilux rep went to install the lockset. Something went wrong. He struggled for what seemed like an hour (it may have only been 20 minutes) to get it installed properly. Once he had it installed, he turned and began telling me I would need to remove it to file some parts down to improve the action. For a second time, Tony immediately spoke up, telling me explicitly not to do this, to just use it for a couple of months and it would be fine — which is exactly what happened.

With just my daughter’s bedroom window and the two basement windows left to install, the guys came back the following morning for a couple of hours to finish up. The Unilux rep showed up the second day, dropping some drip caps and the basement handles on a table for me to install. This annoyed me since I had never installed either, and it would’ve taken the Unilux rep a few minutes to do it himself while the guys were working.

And then later, as everyone was leaving, our Unilux rep suggested now that I had seen the guys install the kitchen door surely I’d be fine installing the front door on my own (these Passive House doors are heavy, and ideally require 2-3 guys to install them safely — and preferably by someone who has done it before). They’re also expensive, as I noted earlier, so why would I even contemplate installing it on my own. For a third time Tony probably saw a look of terror on my face, immediately spoke up, and offered to come back to install the front door once we were ready for it.

By chance, Tony somehow managed to be standing next to me each time our Unilux rep made an asinine suggestion. I can’t put into words how grateful I am that Tony spoke up for me and, really, the integrity of our build — he certainly didn’t have to, which probably tells you all you need to know about the quality of his character.

Happy to just have all my windows and kitchen door in, and knowing that Riggs and the  guys were willing to come back to install the front door, I said nothing to our Unilux rep about his behavior.

Later that week, however, we received the Unilux rep’s final invoice. It showed that he was double billing us for job site delivery. It was for just over $300. Not the end of the world, and an easy fix, but, nevertheless, annoying since it seemed to suggest he sent us a final invoice without consulting the original contract.

The invoice also had a storage fee for $1500. He had mentioned months before in an earlier email, after we had just fired our two GC’s, that storage fees were a possibility. At that time we had a lot going on, so I didn’t consult the contract we had signed with him. I just assumed storage fees were in the details of the contract, so when I got the final invoice I planned to pay for it.

But then my wife’s cousin found out about the storage fees, and he expressed surprise, telling us that, in his opinion, no one in the industry does this.

So I went back and looked at the contract. Not a word about potential storage fees. Nothing about when storage fees would begin to accrue, and no fee schedule noting how much per day, week, or month. In an industry plagued by delays, if storage fees were a legitimate billable cost shouldn’t our Unilux rep have the details outlined in his contract?

So then I separately asked a couple of people who work in the construction industry about our situation, one with over 30 years in residential work, the other with over 20 years in commercial construction. They, unsurprisingly, had similar responses:

“What’s in the contract?”

“Nothing.”

“Well, then…”

The one who works in commercial construction was much more blunt:

“So it’s bullshit. He made it up.”

My wife wrote an email to our Unilux rep asking about the double billing for job site delivery and the storage fees, and expressing frustration with how he behaved on the job site during the installation. He responded with a series of emails that can best be described as unhinged or histrionic.

We contacted people above our Unilux rep to see if someone else could come back to finish things up — in addition to installing the front door, a piece of glass broke during installation (we think it was a manufacturing error in the glass), and a different subcontractor broke a part on a basement window that needed to be replaced. They told us our rep was the only one available in the Chicago area, probably, in part I’m guessing, because they wanted our Unilux rep to resolve the situation. Unfortunately, that didn’t happen.

He came back to the site to see the broken part on the basement window, removing the working stay arm (I assumed to make it easier for him to order the correct part, which was a cylinder on the frame that attached to the stay arm). He also dropped off the rest of the missing drip caps and the rest of our correct handles.

broken:missing cylinder on base wdw
Missing cylinder on the frame had been snapped off by a subcontractor.

A few months after this, in November, after drywall had started, the Unilux rep came back to install the replacement glass for the broken window, and the part for the basement window. He was visibly angry and petulant, clearly still annoyed that we had complained about him.

normal basement window
Here’s our other working basement window for comparison. 

When we were in the basement he just handed me the working stay arm that he had removed months earlier, apparently for me to install myself. When I pointed out that he hadn’t given me the part for the frame — the actual part that had been broken and needed replacing — he just stared at the open basement window for a few long seconds before we both realized he had failed to order the correct part.

It had been almost six months since I originally requested the part. Making matters worse, he told me from the outset that the window was unsafe to use until the part had been replaced, so we had never had use of this window since its installation.

He also asked if I had the Unilux owner’s manual. No, I didn’t. He never gave me one. I didn’t know one existed. Why he didn’t give me one the first day of installation back in June, or frankly prior to installation, via email, I’ll never know. Instead, I received the owner’s manual nearly 6 months after the windows had been installed.

The owner’s manual emphasizes how important it is that the windows be opened for at least 30 minutes 3 times a day for “forced ventilation” while drywallers are mudding to ensure no moisture damage occurs to the wood on the windows. If he hadn’t happened to be on site while the drywall guys were present, odds are I never would have received this information, thereby putting the long-term integrity of our windows at risk.

And if there had been damage, then what? Replace the sashes? Replace sashes and frames (the entire window units)? Who would’ve paid for it?

Bob Riggs, his son Brian, and Jason from JPK Builders, came back a few weeks after this to install the front door without our Unilux rep present (I didn’t want him near my house again, I think for obvious reasons). The lockset for the front door was installed without incident. In fact, it happened so quickly I didn’t even see them do it. Clearly there’s nothing inherently difficult about installing Unilux locksets.

We couldn’t be happier with Bob and all the guys he brought to the job site. They work hard, they’re detail-oriented, they’re willing to learn new ideas and techniques, and they have excellent communication skills — not to mention a high level of integrity. We wouldn’t hesitate to recommend Bob or JPK to family or friends. They were a pleasure to have on site, and they were very easy to work with. All of which begs the question: Why doesn’t Unilux recruit someone like Bob to sell and install their windows and doors? He’s used to selling his services anyway, and he has all the necessary construction knowledge to properly install high performance windows and doors. It seems like it would benefit both parties.

A few more months go by, it’s the end of June, 2018, and I still hear nothing about the missing part for my basement window, even though our Unilux rep had assured me in an email back in November, 2017 that he would make sure to order it and send it to me. We couldn’t use the basement window for almost a year at this point.

Reluctant to contact our Unilux rep again, I looked around on GBA and found Hawkeye Windows and Doors out of Iowa who installs Unilux windows. I spoke with Larry Martin, the owner, but it turns out he doesn’t sell Unilux windows anymore. Nevertheless, after I explain my predicament, he’s nice enough to offer to hunt down the same, or similar, Roto hardware part for me.

Within a week or two I have the part in my hand. Think about that for a second. I wasn’t even really his customer. It would’ve been so easy for him to just say no, he can’t help me. Instead, he invested time hunting down this random, miscellaneous part for me. I got better customer service from Larry for a $50 part than I did from our own Unilux rep after ordering a whole house worth of windows and doors. It’s astounding in a way, and what a world of difference from a client’s perspective.

During construction it feels like a miracle when you run across people like Bob Riggs, Tony, or Larry Martin — especially after having to deal with someone like our Unilux rep who needlessly made life difficult for us.

Unfortunately, when I go to install the part, although it could work, I realize it would require drilling new holes in the sash and frame. At that point, I get angry again: Why should I have to drill new holes in a brand new window simply because my Unilux rep is too lazy or incompetent to get me the right part?

I contact a couple of people above our Unilux rep, but I don’t hear back from them right away (one was out of town at the time), so I think I have no choice but to contact our Unilux rep again.

Here’s how our Unilux rep chose to respond to my email, carbon copying me and Eric Murray, the East Coast Regional Manager for Unilux:

“They broke this part after the installation; I had ordered one but then lost it [emphasis added].  According to what you mentioned to me a month ago.  I’ve thought Eric Whetzel was so upset with me after all ( despite all my goodwill , hard work and honesty trying to stay with them in good terms….it has been such an unfortunate experience with these clients; it never happened to me during my entire 30 year career…) I don’t understand why is he still speaking with me if he didn’t want to deal with me again? Anyway, if you did not order this yet, I will have Helmut ship directly to them and done with it”

It’s true, we wanted nothing to do with him, and I think for legitimate reasons. But what’s also true is that after more than a year he still hadn’t gotten me the part for my basement window — either out of malice, incompetence, or some mixture thereof. In addition, he claims to have ordered the part, lost it… and then what? He chose to do nothing? Unbelievable.

After this last email from our Unilux rep, he did, in fact, order the part for me, but when it arrived it turned out to be the wrong part, so it was totally incompatible with my window — wasting everyone’s time yet again.

Eventually, Eric Murray and George Wright from Unilux were nice enough to get me the part that I needed, although I’m sure they have better things to do with their time.

Just as a quick summary regarding our Unilux rep:

  • He ordered window sills with the wrong dimensions (wrong by almost 3″), even though I supplied him with construction drawings so he could get this measurement right. And his proposed solution to this problem ignored our construction drawings and what we were trying to accomplish with an “innie” window placement.
  • He didn’t bring most of the handles we had ordered to site. He never found the missing ones, so he had to re-order them.
  • He didn’t bring the drip caps.
  • He almost broke the lockset to our kitchen door, and then told me to remove it and file parts of it down to improve its action. Tony had to interject and explain why this was inappropriate.
  • He installed most of our Suntuitive glass upside down (4 out of 6 units).
  • He suggested I should install my $5,000 front door on my own.
  • He failed to give me the Unilux window and door owner’s manual, putting the integrity of our windows and doors at risk as drywall was being installed.
  • He tried to double bill us for job site delivery of the windows and doors.
  • He was going to charge us $1,500 for storage fees even though the contract says nothing about potential storage fees.

Obviously some of these items on their own would be no big deal, but when considered together what other conclusion is there but that this person is disorganized and can’t be bothered to get details right (this is the nicest way to interpret his behavior). This seems like an awful lot to get wrong for someone who was on the job site for only a day and a half.

The whole situation is unfortunate, as I explained to George Wright in an email, since we really like our windows and doors. Apart from an adjustment required on our front door and a kitchen window, they’ve been wonderful to live with. They’re beautiful to look at, and they function really well. All of this is undermined by the actions of our Unilux sales rep.

Of all the trades and services we knew we’d have to hire for our build, our Passive House window and door supplier was the last one we expected to have issues develop with customer service.

Suntuitive Glass Performance

Bob Riggs and the guys installed the windows with the Suntuitive glass at an ideal time of the year (June, 2017), just heading into the hottest and sunniest weeks of the year for us here in the Chicago area. It immediately gave us an opportunity to see what the glass can do, and how it behaves on a daily basis.

exterior view of Suntuitive in the evening
Suntuitive installed for our west facade.

It took a couple of days to get used to the colored tint, but we don’t even notice it anymore. It’s a subtle, beautiful gray that goes well with our charred cedar siding (more on that later).

We quickly realized how well the glass works in direct summer sunlight. The picture above doesn’t really tell you much, but in the picture below you can see just how deep the tinting gets when someone who’s standing in the middle of the window puts their arm out of an open side window. The Suntuitive glass really is like sunglasses for a structure.

suntuitive hand in open window
The Suntuitive glass almost looks black from the outside when the sunlight is hitting it directly.

And even when it’s at its darkest, it doesn’t take long for it to go clear once the sun begins to set:

Suntuitive at sunset as tint fades
Evening, and the Suntuitive glass is going clear before nightfall.

And you get a real sense of just how effective the tinting is when you stand inside and look out between a picture window and an open window:

side by side suntuitive and sun
Side by side comparison: Suntuitive vs. direct sunlight.

Here are some more photos of the Suntuitive looking out from the interior:

Suntuitive at full tint in afternoon looking out Family Rm window

Even in the hottest sunlight, the interior side of the glass only warms slightly. It’s a really impressive product.

Suntuitive MBR-Family Rm at full tint in afternoon

Another view of the Suntuitive going clear in the evening:

Suntuitive at sunset looking into backyard
Suntuitive later in the evening, as it turns clear.

In the picture below you can see the glass beginning to tint even though the sun hasn’t quite made it into the backyard to hit the Suntuitive directly from the west. Because the tinting isn’t automatic, its effect is subtle and feels natural as it changes.

me taping family rm wdw from int
Suntuitive glass starting to tint.

With most of the windows and doors installed, I could start thinking about installing my ERV and ductless mini-split system, planning for my first blower door test, and scheduling the install of our siding.

It felt like a really big step in the build — and it meant no more blue tarps covering the window openings to keep the rain out.

Although the days were long, it helped having my wife and daughter on the job site all the time. It also gave my daughter a once in a lifetime chance to play on an active construction site, and she had a blast.

John Ford - beast running away
 A John Ford “Searchers” shot of the Beast running off to play.

It’s been fun to mark progress in the build through photos. In fact, looking through photos sometimes produces real surprises:

beast-looking-at-view-from-br-for-1st-time-close-up
In late January, 2017, looking out the rough opening for her bedroom window…
looking out beast's br window for 1st time
Same opening in June, 2017. A really big moment in the build: getting their first look out of my daughter’s bedroom window.

Six months had gone by, and we had already survived a lot, with much more to come.

Attic Insulation

2

For high-performance structures relatively high R-values for insulation (at least when compared to current building code requirements) are required from the foundation all the way up to the attic (e.g. Passive House or The Pretty Good House).

After some initial research and product pricing, we knew we were going to predominantly use Roxul (with its recent name change, it’s now known as Rockwool) for our insulation needs. But after realizing blown-in rock wool wasn’t available (at least at the time anyway — presumably this will change in the future), and that batts didn’t make much sense for this application (too costly, and they’re considered more difficult to install properly), we knew we wanted some kind of blown-in insulation. The main options, currently, are fiberglass and cellulose.

Fiberglass vs. Cellulose
Best Attic Insulation

We wanted to avoid foam as much as possible throughout the build, both because of its  environmental impact and the fire risk associated with its use, so we didn’t consider spray foam as a real potential option.

After evaluating blown-in fiberglass and cellulose, we decided that cellulose made the most sense for us.

The next decision was to figure out how much, meaning how many inches did we want to blow into the attic. Our first builder was going to do R-49, which is the current code minimum standard here in Illinois. At the time, even before things went horribly wrong with this builder, this felt like too little. I had read stories about other Passive House projects using significantly more, but many of these were in even colder climates than ours (we’re in climate Zone 5 here in the suburbs of Chicago).

How much do I need?
How much insulation is enough?

We decided that rather than settle on a hard R-value as our goal, we would just do a solid two feet of cellulose since we would be doing the installation of the material ourselves (less out near the 12″ raised heel trusses on the north and south sides of the house). There wasn’t a significantly greater cost in materials to go from an R-49 (just under 15″) to the approximately 24″ we blew into the attic.

After doing a little research, and speaking with a Passive House consultant and a local general contractor who consulted with us on various issues as they arose, the consensus seemed to be that attic insulation was an easy, relatively inexpensive place to sneak in more R-value, which is particularly beneficial in our predominantly cold weather climate (the ceiling/attic is where a significant amount of conditioned air wants to escape in the winter anyway). The blown-in cellulose, like the Rockwool, also has some nice sound deadening qualities as an additional benefit.

How much insulation do you need for Passive House?

The cellulose brand in our local Home Depot is GreenFiber, so that was the product we ended up using. Their product is DIY friendly, even allowing homeowners to rent machines for the actual installation:

We started out with 200 bags delivered to the job site. We assumed we were going to need more (the GreenFiber insulation calculator suggested we would need 250 bags to reach 2′ throughout the attic), but thought it might be easier to estimate a final total once the first 200 bags were installed.

The boys, who helped us with various grunt work chores throughout the project, were nice enough to return and help us bring the bags of insulation indoors the night before we started the installation in the attic. We set up a bucket brigade between the driveway and the kitchen, so it went pretty quickly.

guys w: cellulose
The boys after helping us bring in the first 200 bags of cellulose insulation: Luke, Smitty, Eduardo, my wife Anita, and Ricky.

On the day of installation, getting everything set up and started was fairly straightforward. Apart from a loose hose connection at the machine, which a small strip of Tescon Vana tape rectified, we had no issues with the blower. While my wife fed the bags of cellulose into the blower, I was up in the attic directing it into place.

The first couple of hours were actually kind of fun, but getting a consistent two feet of insulation throughout the attic was time consuming and eventually mind-numbingly boring. The first 12″-18″ weren’t so bad, it was having to wait in each section of the attic for that last foot or so to be blown in place that it began to feel like real drudgery.

cellulose installed looking east
From the attic opening, looking east towards the front of the house.

It also didn’t help that I had a fever and a cold on the day of installation, so being up in the attic surrounded and covered in dust didn’t improve my mood. The process, although very DIY friendly, does require patience and a willingness to cover up — eyes, mouth, and nose — for adequate protection against all the dust floating around.

The day before blowing in the cellulose I went through the attic and marked my goal of 24″ of insulation on various roof trusses so I would have a good visual goal to shoot for. In fact, had I known just how dusty and challenging visibility was going to be during the blowing process, I would have marked every single roof truss at the 24″ level to make the job a little easier.

We didn’t have much in the way in terms of obstacles from various services, other than a few pipe vents for plumbing and radon, along with a small amount of electrical conduit for solar on the roof and a single light in the attic (we kept the majority of all services in our ceiling service core and our walls). This made for a fairly straightforward installation of the cellulose.

cellulose installed looking west
From the attic opening, looking west towards the back of the house.
south east corner w: cellulose
Another view, this time a little further to the right, showing the far northwest corner of the attic.
vents by bench w: cellulose
Cellulose at its full depth around the plumbing vents and radon stack.
cellulose at the attic hatch
Finishing up. The attic access hatch is visible at the bottom of the photo.
bench behind attic hatch opening
The bench next to the attic access opening as we finish up blowing in the cellulose.
building up cellulose around attic chutes
Cellulose hitting the underside of the insulation chutes as it gets blown into place at the edge of the roof by the raised heel trusses.

Thankfully I was able to keep the cellulose out of the insulation chutes, instead slowly piling it up just below each chute. The siding guys already had most of the soffits installed (this was the end of October, 2017 last year), including a channel for air flow for our “vented roof” assembly, so any cellulose that found its way into the chutes and down into the soffits would’ve been a real pain to remove (I’ll have a separate post later about the siding installation, including the many details of our rain screen and 4″ of Rockwool on the exterior side of the Zip sheathing).

The bench next to the attic access hatch ended up working out really well, and I was very thankful it was in place.

lid on bench w: cellulose
Lid of the attic access hatch sitting on its bench next to the attic opening after the installation of the cellulose is nearly complete.

By the end of the first day it was clear we didn’t have enough cellulose to finish the whole attic. We started with 200 bags, but we finished up the second day at just under 300 bags total (288 was the final number of bags installed, so a little more than the 250 recommended by the GreenFiber calculator). What we didn’t use we were able to return to Home Depot for a refund.

how much more cellulose
My wife wondering how many more bags until we’re done — unfortunately the answer was simply ‘more’ as she popped her head up into the attic several times towards the end of the installation.

Apart from the north and south sides of the attic around the raised heel trusses, we had a solid 24″ throughout the attic, in fact, a little more in the center of the attic where it was easiest to pile it up and let it accumulate (closer to 28-30″ in some areas). This probably explains, too, the additional 38 bags we used that exceeded the initial estimate by the GreenFiber calculator.

covered in cellulose
This is where a degree from Michigan gets you. #GoBlue. It was a long day.

On a side note, there was also some concern about the weight of the cellulose on the Intello (our ceiling air barrier), but in the end, even where the cellulose was at its deepest, there was thankfully very little sagging evident in the Intello. Even if it had been worse, the 1×4’s were in place to help support the Intello and the cellulose for the long term (the 1×4’s were spaced roughly 16″ apart between the 2×6’s of the service core).

sag1
Slight sag in the Intello evident after installing the cellulose in the attic.
sag2 closer view
Close-up of the slight sag in the Intello near the west gable end of the house.
sag3 Intello touching 1x4's
Another view of the slight sag in the Intello as it touches the 1×4’s directly below it.

It’s worth keeping in mind that the cellulose will settle a bit, especially during the first few months. This is obviously very important when it comes to establishing what depth you’re initially going to blow in and your expectations about long-term R-value after settling has occurred (something to consider before signing a contract if you’re going to be hiring someone to do the work — both parties should agree and understand what the final R-value will be before the work commences).

I was back up in the attic recently as I finished up painting the master bedroom and closet. Since I already had drop cloths down, I thought I should take what will hopefully be one last look at the attic.

ladder in wic
Ladder under the attic access hatch in the master bedroom closet.

On average, the cellulose looks like it has settled about 2-4 inches below its original depth, depending on where I looked.

settling1
Some of the red horizontal lines at 24″ now clearly visible in some parts of the attic.

Even with this settling, the attic probably still comes in close to R-70 on average —significantly less out at the north and south ends of the roof with the raised heel trusses, but a little more in spots towards the middle of the attic where some red lines are still hidden below the cellulose.

settling2
You can see my red arrow and horizontal line at the 24″ level off to the right.

Just under or over R-70 in the attic is in tune with both the Pretty Good House and Passive House metrics for attic insulation for my climate region (Zone 5 here in the suburbs of Chicago).

While I was up in the attic I also noted that there was no evidence of any water or moisture damage on the OSB roof sheathing, or any indication of wind washing of the cellulose, so the attic seems to be performing as designed, which is a great relief.

Attic Access Hatch (Air Sealing #7 )

0

Our attic is designed mainly to hold our blown-in insulation (a future post will go over the details), as opposed to a place for running HVAC equipment, conduit for electric, or as a potential area for carving out additional storage space.

Nevertheless, in order to have access to our attic for future maintenance or repairs, I installed a well-insulated attic hatch in our master bedroom closet ceiling.

Following Passive House and Pretty Good House principles required trying to protect the thermal envelope, even in this relatively small area, in order to avoid what can be a notorious point of air leakage and heat loss (i.e., the stack effect).

There were two main products I considered using for this:

Battic Door (R-50 / without ladder)

They also have a product that allows for a built-in ladder for easier access to the attic (you won’t need to drag your ladder in from the garage) while also maintaining a high R-value:

Battic Stair Cover

The other product I considered using was from ESS Energy Products:

Energy Guardian Push Up Hatch Cover

We ended up going with the Battic product, which I purchased through the Home Depot website (this saved me a trip to the store since it was delivered to site).

Some other products that I’m aware of include:

475 High Performance Building Supply used to sell a Passive House certified version with a fold-down ladder included, but I don’t currently see it listed on their website:

WIPPRO Klimatec 160

Or this product that also incorporates a ladder is available from Conservation Technology:

Attic Ladder

Because the Energy Guardian hatch is made out of rigid foam, I thought the Battic door was the better choice since it seemed like it would be a little sturdier and more durable. To be honest, once the product arrived and I unpacked it, I realized it was something I, or anyone with basic carpentry skills, could put together themselves (assuming you have the time).

Following the directions, I cut an X in the Intello on the ceiling between two roof trusses (and our 2×6 service core below each truss) in order to establish the opening for the Battic frame.

I folded the cut edges of Intello up into the attic for the two long sides of the Battic frame. For the two shorter sides of the Battic frame it was easier for air sealing to push the Intello down into the living area.

At this point I was able to screw the Battic frame into place.

looking up into battic attic hatch
Battic frame initially installed between roof trusses and 2×6 service core.

Once in place, I used a mix of Contega HF Sealant and Tescon Vana tape to air seal the Intello to the Battic frame.

battic - taped sealed to intello
Air sealing the Intello to the Battic frame (short side between trusses).
tescon vana air sealed battic w: HF behind Intello
Another view of the Intello sealed to the Battic frame.
looking down at air sealed battic from attic
View of the installed Battic frame from the attic.
attic access air sealed - attic side
Air sealing the connections between the Intello, the Battic frame, and the roof trusses in the attic.
air sealed corner of battic
Using HF Sealant to make the connections as air tight as possible.

Once the outside perimeter of the Battic frame had been air sealed to the Intello, the only place left for air infiltration was where the lid would meet the frame of the Battic hatch once it was installed (more on this later when I discuss my first blower door test).

There was some additional framing required, but it was just a couple of “headers” between the roof trusses to add structural integrity to the two shorter sides of the Battic frame.

attic access from below
Battic frame with additional 2×6’s on one of the short sides.

Since we were using a significant amount of blown-in insulation in the attic, it made it necessary to build up the sides of the Battic frame in the attic with some plywood to get the top of the opening above where the insulation would eventually stop.

Here’s another view of the 3 sides of plywood installed:

attic access looking down - directly

The fourth and final side of plywood was installed just prior to blowing in the insulation — in the interim this made getting in and out of the attic much easier.

After a couple of practice attempts, it quickly became apparent that raising and removing the lid once in place, and fighting to get it back down into the master bedroom closet, wasn’t worth the trouble. Instead, I built a small bench in the attic next to the Battic frame so I could push the lid up above the level of blown-in insulation, this way it could have somewhere to safely sit while dealing with any issue in the attic.

bench for attic access lid
Battic lid resting on the bench.

It’s very easy to grab the lid off the bench and bring it back down into position while slowly walking down the ladder in the master bedroom closet to make the final connection/seal.

Although the installation process was fairly straightforward and headache free for the Battic product, if I had it to do over, I think I would have the attic access point on the exterior of the structure, for example, on the gable end of the house in the backyard.

GBA – gable access to attic
Custom Gable Vents
AZdiy

Putting the access point above the air barrier would make meticulously air sealing the entry point for the attic less important, so keeping water out of the attic would be the main goal. An additional plywood buck would’ve been necessary, replicating what I did for our windows and doors (more on this later), but I think it still would’ve been the better option overall.

Putting the attic access on the exterior of the house would also mean avoiding an ugly hole somewhere in our drywalled ceiling. No matter how nicely trimmed out, these attic access points on the interior of a home never look right to me. We’ve tried to hide ours as much as possible by sticking it in our master bedroom closet, which has worked out well, but not having one at all on the interior of the house would make for a cleaner, better solution in my opinion.

If granted a do-over, I would also add a cat walk in the attic through the roof trusses. This would make getting to any point in the attic much easier to navigate. It would also help to avoid disturbing the blown-in insulation too much.

And here’s a photo of the bench in the attic, next to the opening for the Battic attic hatch, after the blown-in insulation was installed:

bench surrounded by cellulose
Bench for the Battic hatch lid.