kimchi & kraut

Passive House + Net Zero Energy + Permaculture Yard

Category Archives: Passive House

Flooring: Tile

4

Porcelain Tile

We chose porcelain tile mainly for its durability, plus we found a collection of tile that mimics aged concrete, which we felt would work really well with our Urban Rustic theme for the house.

The Iris US Ecocrete collection allowed us to use two different colors while maintaining a consistent overall look through the house. For example, in the kitchen, entry, and utility room we went with the Sage color; a nice mix of green, gray, and even some spots of very dark green or black. For the master bath we went with the Weathered Black since we were going to have some red accents and we wanted to play with color a little bit.

The Ecocrete tiles are also Greenguard certified, and they have a slightly rough surface texture to help prevent slips or falls.

For tile underlayment, Wonderboard Lite was our base.

 

wonderboard

 

For thinset and grout, Mapei products were used, readily available from Floor and Decor.

 

Mapei thinset bags

 

For our shower walls, we used a newer system from USG, their Durock Glass-Mat backerboard. For the floors we used their pre-sloped shower tray system.

 

 

The shower kit also came with all the drain components.

 

shower drain cover

 

 

Colors and Textures

In the photo below, all of our tile selections are laid out in preparation for deciding on grout colors.

The porcelain hexagon tile was used on the floor of our second bathroom, in addition to the floor of each shower. These were the only areas where we didn’t use the Ecocrete tiles.

The blue glass accent tile was used in our second bathroom shower, while the red glass was used in our master bath shower.

The white subway tile was used in both showers for the ceilings and the walls.

 

tile grout selections

 

Tile almost complete in the kitchen:

 

kitchen tile being installed

 

Tile started in the master bathroom:

 

mbath floor tile going down

 

For the two showers we decided to orient the slightly larger than traditional subway tile in a vertical pattern, a subtle repetition of the strong vertical lines of our charred cedar siding.

In the second bathroom shower we used a 4″ x 10″ subway tile, while in the master shower we went even larger using tile that measured 6″ x 17″.

 

2nd shower tile going in

 

We kept the glass accent tile to a minimum, utilizing it inside each niche and next to the shower head and valve.

 

2nd shower niche going in

Blue glass going inside the niche.

 

Using a frameless fixed panel of glass without a door keeps each shower more open and easier to access. It also means one less thing to have to clean, maintain, or eventually replace.

By covering the curb with a towel before turning on the water, very little water escapes to splash on the nearby baseboard or drywall. A small price to pay, we feel, in order to keep the shower area more open.

In terms of size, the second bathroom shower measures 3′ wide and 5 1/2′ long, while the master shower is slightly larger at 3′ x 5′ 10″. Both spaces are very comfortable to shower in.

 

2nd shower done

 

We chose to tile the ceiling of each shower since, in our experience at least, drywall doesn’t tend to hold up very well in this area, instead flaking or peeling off over time. By combining the tiled ceilings with their lower height than the room, visually we like how it makes clear that the shower area is its own dedicated space.

 

2nd shower niche done

The blue glass almost looks black until you step into the shower.

 

We liked the look of the traditional hexagon pattern, plus it feels nice underfoot, both in the showers and on the floor of the second bathroom.

 

2nd bath floor

 

Finished master bath shower with glass panel:

 

master shower done

 

In both showers we used a Speakman shower head and valve. They’re reasonably priced, and they have a good reputation for durability. We had seen them used in hotels on a couple of vacations prior to our build. We were surprised by their quality, especially for a brand we had never previously heard of before.

All of our plumbing fixtures, including these shower heads, are Water Sense certified in order to keep our total water usage to a minimum, while also hopefully reducing our annual water bill.

Although I’ve read complaints from users online about their dissatisfaction with a lower flow shower head — some even going so far as to remove the flow restrictor inside the head in order to increase the flow of water — we couldn’t be happier with our shower heads, faucets, and toilets. So far, at least, we’ve had zero issues with any of these Water Sense certified fixtures.

 

Master bath niche with red glass accent:

 

master bath niche

The seat is nice to have, not for sitting though, mainly for holding shampoo and soap, and a nice spot to put a towel for drying off.

 

Master bathroom floor in the weathered black tile:

 

master bath floor

 

A second view of the black tile as it meets up with the hickory flooring in the master bedroom:

 

2nd master bath tile

 

The tile in the entry area as it meets up with the hickory wood flooring:

 

entry tile

 

The hickory meeting up with the kitchen tile:

 

kitchen family rm corner finished

 

With all of our flooring complete on the main floor, the only area left to finish up was our basement slab. I’ll discuss the decorative finish we came up with for the slab in the next blog post.

 

 

Flooring: 3/4″ Hardwood

0

Hardwood vs. Carpet

In our previous home we made the decision not to use any carpet. Not only did we prefer the look of combining tile (for wet areas) with hardwood (living areas and bedrooms), we also knew these surfaces would be easier to keep clean than carpeting. Although I grew up in two homes that both had mostly wall-to-wall carpeting, it was only after having to rip up several rooms of carpet that I realized just how much dirt and general detritus gets trapped below the surface.

There does seem to be an element of generational change (some would argue even social class) involved in this choice between carpet and hardwood. For example, my parents, who grew up on farms in the 1940’s without carpet, were shocked that we preferred hardwood flooring since having wall-to-wall carpeting was a big deal for them when they moved to Chicago in the late 1950’s. To them, hardwood flooring signified the outdated past while carpeting was the future.

Having lived with both, I don’t think I’d ever choose to go back to carpet. In addition to being much more visually interesting, I find hardwood flooring not just easier to keep clean but much easier to fix or repair should damage occur.

 

 

Which species of wood?

For our last house we went with pre-finished 3/4″ x 5 1/4″ wide plank Australian Cypress. Even though we loved the look of the Australian Cypress, it was more expensive than other species and it seemed to dent more easily than its Janka hardness score would suggest.

Oak is, by far, the most popular wood species for flooring, seen in countless stain color variations, but we wanted to try something with more natural color variation from one board to another.

For our new home we knew we still wanted to go with only hardwood and tile, even though there are now more eco-friendly and sustainable carpet options. We also knew we’d have to utilize a low or no VOC finish for the wood flooring in order to maintain a high level of indoor air quality.

Another option to consider is engineered vs. 3/4″ solid hardwood flooring. Because of the additional wear layer, and because I’d previously worked with a solid hardwood in my last house, we opted for the 3/4″ solid.

 

 

Also, since we went with a pre-finished hardwood last time, this time we decided to try a traditional install, meaning sanded and finished in place.

The only real gripe we had with the pre-finished flooring in our last house was the beveled edge between boards, creating grooves that can trap dirt. Also, we felt it was slightly less visually appealing than a traditionally finished floor. Nevertheless, we would consider pre-finished flooring to be a viable option, especially if you’re having to work under severe time constraints and you need a room or whole house completed quickly.

 

 

3/4″ x 4″ Hickory

After considering various wood species, we settled on Hickory since it can look similar to the Australian Cypress, while its Janka hardness score is slightly higher, giving us some added durability. It’s also harvested and shipped from within the US, so it cuts down on shipping costs and total embodied carbon emissions.

Looking around locally, including our local Floor & Decor, I could only find manufacturers who packaged their flooring in boxes of shorter boards (the longest boards typically in the 4′-7′ range). Using shorter boards tends to produce a choppy look, reminiscent of a brick running bond pattern.

Online the options seemed much better, although shipping costs had to be factored in. It was also difficult to find the color variation we were after since much of the Hickory that’s available would be classified as clear or select (NWFA). In the end, we used Countryplank, ordering their Old Growth Hickory in random lengths (2′-10′).

After initially receiving someone else’s order in an entirely different species, Mark from Countryplank quickly took care of the problem and got my correct flooring to me the following week. Once it showed up on site, the boys were back to help me carry it in the house — as always, many thanks to them for helping us out with the grunt work.

 

unloading wood flooring

Smitty and Ricky helping us unload the truck.

 

Of course when the flooring was being delivered it turned out to be one of the coldest days of the year with plenty of snow around. Thankfully, with the guys helping us, it went pretty quick.

 

 

Installation

Before installing the Australian Cypress in my last house, I used a book from Don Bollinger as a helpful how-to guide. The book came with a video companion, which I’ve since lost, but much of the footage has shown up on YouTube:

 

 

And there are many other helpful videos available as well:

 

 

After clearing a room of tools and other construction related items, I set to work prepping the Advantech subfloor.

 

family rm b4 wood floor

Setting up to prep the family room subfloor.

 

Although the Advantech is said to resist moisture better than other OSB or plywood subflooring, because of the delay in construction after firing our pair of GC’s, the sheets of Advantech saw more exposure from the weather than is ideal.

Nevertheless, apart from having to grind and sand down some edges that had expanded due to moisture, the Advantech held up incredibly well. In addition, since the framers used nails to fasten it to the floor joists I went through each room adding decking screws to help stiffen the floor even more.

Once this was done, I was able to put down some red rosin paper. In my last house I had used 15# roofing felt, but since it’s embedded with asphalt I decided, for the sake of indoor air quality, that the red rosin paper was the better option. Rather than using it to control moisture, it’s mainly helpful in keeping a neater workspace as the flooring goes down.

 

mbr red rosin

Red rosin paper going down in the master bedroom.

 

With all of the red rosin paper down, it was time to bring in the tools and to start arranging piles of wood flooring based on length and color. As I unwrapped each pile of boards I went looking for the longest and darkest boards, making sure to have them nearby as I tried to use the longest boards first, and then be selective about how to place the darkest and most attractive pieces. When all the rooms were complete, I wanted the leftovers to be mostly shorter and lighter colored pieces.

 

family rm prepped 4 wood

Family room prepped for hardwood flooring.

 

The only other major decision before beginning to install the flooring was orientation. Most homes utilize the longest wall in a space as a guide, installing the wood parallel to this wall. Ideally this would also mean the flooring runs straight from the front door entry area to the back of the house in bowling alley fashion. This assumes the floor joists are perpendicular to the direction of the wood flooring. In our last home and in our current Passive House we could have oriented the hardwood flooring in this ‘straight’ pattern, but after trying and loving a diagonal pattern in our last home we knew we wanted to stick with this angled pattern. The only significant down side to the diagonal pattern is additional cuts are necessary so, therefore, more wood is required.

 

family rm wood going down

Arranging pieces before getting started.

 

The use of spline pieces, or split tongue, was helpful when making a change of direction, or establishing the border where the hardwood flooring met the tile in the kitchen, utility room, entry, and bathrooms.

 

kitchen outside corner w: router

Finishing up the family room. Note the shorter pieces of spline on the tile, and the router used to make a connection between the main pieces and the wood border next to the kitchen tile.

 

When I needed to create a groove I used a groove bit with the Bosch router before gluing and installing a section of spline. This was especially helpful where the wood met up with tile and I needed to first create a border piece.

First, using a table saw I would cut off the tongue side of the board, facing this side towards the tile. Now with the groove side exposed I could cut to length the piece I needed to butt up against this border piece against the tile. Once it was cut to length I could use the router to make a groove on the end that would be in contact with the border. With the border piece and the field piece now having grooves it was easy to add the spline in between, making for a tight, durable connection between these two pieces with some wood glue.

 

family rm mostly done

Done with the family room and ready to head towards the front door.

 

The diagonal pattern also means that the flooring nailer runs out of room before you get to the wall because of the angle involved. For these last few inches I utilized a trim nail gun, shooting into the tongue and face nailing a couple of nails at the outside edge. Even though these nails are significantly weaker than the flooring nails, we haven’t experienced any gapping or other issues at the perimeter of our walls. This may be due to the fact that we don’t see wide swings in the levels of indoor humidity (typically the house stays within 30-55% relative humidity; most of the year hovering around 40%) because of the air tightness and high levels of insulation required of a Passive House.

It probably also explains the lack of floor squeaks. When there are wide swings in outdoor humidity we sometimes get a couple of ‘pops’ from the wood flooring itself, but we’ve never had an issue with the floor joists/Advantech connection squeaking. In our last home, a conventionally built tract home, similar changes in humidity made our wood floors sound like they were in a hundred year old farmhouse, popping with almost every step until the humidity and the wood itself had a chance to stabilize.

 

 

One of the best tool purchases for the entire build was this Powernail ‘persuader’. Whether at walls, or out in the field, this tool works exceptionally well at closing unsightly gaps that would otherwise need to be filled with wood filler.

 

powernail persuader

The Powernail ensured a much tighter floor installation.

 

And the Powernail was an excellent guide for identifying bad boards — if it couldn’t close gaps on a particular board, it meant that board shouldn’t be used.

 

 

For spots or areas that would need some extra attention during sanding, I marked these with a pencil, either with an X or a circle.

 

marks for xtra sanding

Spots requiring careful sanding marked with X’s or circles.

 

Before sanding I also went around applying wood filler to all of the nail holes, any voids in the many knots, and to any remaining gaps between boards (mostly where the ends butt together). For the deepest voids in the knots I made two passes with the wood filler, sanding in between coats. In the end this produced a much smoother finish.

I found the Timbermate brand online, and was pleasantly surprised at how easy it was to work with and how well it’s performed over time. I started out with half a dozen different colors, but eventually narrowed this down to just two colors: Beech/Pine and Chestnut. In effect, these two colors spanned the wide variation in color from light to darker boards.

 

 

Although it claims to be zero VOC, it does have a distinct and slightly funky smell as it comes out of the jar. This odor completely disappeared once it was sanded down and the floors were sealed with tung oil. The Timbermate is also very easy to sand smooth.

 

wood putty for floors

 

 

Sanding the Floors

Thankfully, the flooring didn’t require a lot of sanding, nowhere near the amount typical in strip oak flooring. Overall, the flooring did seem to be precision milled and I ended up with very few completely unusable boards.

 

not much sanding

This was about as bad as it got. Most boards came together much better than this.

 

I could’ve rented a traditional floor sander and edger, but after reading about Festool’s orbital sander and then a similar sander from Bosch, I decided to try the Bosch out and see what it could do. I started in a smaller room, my daughter’s bedroom, just to see how long it would take to do a room sized amount of sanding. Starting with 40 grit for the worst areas, I slowly worked my way through increasing grits, ending at 150 for a smooth finish ready for tung oil.

Since I was able to work through the various grits in just over an hour, I decided to keep using the Bosch sander for the duration of our project. Again, if I was sanding conventional oak strip flooring purchased from a big box store, I definitely would’ve rented the normal sander/edger combo.

 

bosch sander

Bosch orbital sander.

 

Since I was installing and finishing room by room (we had a lot of construction ‘stuff’ to maneuver around, but that we wanted to keep onsite), renting the equipment, in addition to being more expensive, would’ve meant a lot of back and forth between home and the tool rental center. Also, once the flooring was done, I still owned an excellent sander. It’s easily the best sander — palm or orbital — I’ve ever owned. The lack of vibration compared to comparable sanders makes working with the Bosch a real pleasure.

 

bosch sander ready to go

Utility room ready to be sanded.

 

Hooked up to a shop vac with a HEPA filter, the sanding dust was kept to a bare minimum, making the house pleasant to work in, regardless of the amount of sanding just completed.

Just before starting the wood floors my Fein shop vacuum died on me. I picked up a Ridgid brand vacuum from Home Depot mainly because it was the quickest option, fully expecting to be disappointed by its performance. To my surprise, it worked even better than the Fein vacuum and at a much lower price point.

 

rigid vacuum

I was surprised how well this Ridgid vacuum effectively contained the sanding dust.

 

Once the floors had been sanded down, it was finally time to start finishing with tung oil.

 

wood entry tile

Front entry transitioning to hardwood flooring.

 

 

Finishing the Floors with Tung Oil

Before we started the tung oil we made sure to tape edges where the wood met tile, mainly to keep clean up to a minimum, but to also protect the grout from being darkened by the tung oil.

 

wood tile tape b4 tung

Utility room ready for tung oil.

 

Real Milk Paint, the company I purchased the tung oil from, has an excellent how-to video on doing wood floors:

 

 

We used close to a 50/50 mix of tung oil and citrus solvent, with just slightly more citrus solvent added to encourage deeper penetration of the tung oil.

My ‘helpers’ enjoyed doing the first coat with me in each room since there was such a dramatic color change as the tung oil initially went down. The tung oil really makes the grain and all the color variation in the wood really come to life.

First, we brushed in from the perimeter edges several inches, before rolling the rest of the floor with a lambswool roller connected to a paint stick. We were careful to not get too far ahead of the roller with the cutting in, hoping to avoid any ‘flashing’ that could show up where these areas meet up once the floor was completely dry.

 

family rm 1st coat

Anita brushing in the edges before rolling out the remainder of the floor.

 

It was always exciting to watch this dramatic transition from light and dusty to amber, dark, and stunning.

 

starting in br closet tung

Beast helping me start in her bedroom closet.

 

 

tung oiling s's br

Making our way across her bedroom floor.

 

Close-up of the hickory as the tung oil is applied:

 

dry tung

Dramatic change in color as the tung oil is applied.

 

Making progress across the family room floor:

 

dry tung family rm

First coat of tung oil going down in the family room.

 

Once the floor had a full coat of tung oil applied, we waited about 45 minutes before looking for areas where the oil had completely soaked in — this was especially pronounced around the many knots in the wood.

 

kitchen wet stay wet

Family room coated with tung oil.

 

After waiting an additional 45 minutes, we hit these ‘dry’ spots again. Once another 45 minutes were up we then wiped down the floors with cotton rags, available in 20 pound boxes from a local paint store.

 

s's br just tung oiled

Floor rolled, waiting for the tung oil to soak in.

 

Typically the floors were completely dry within 24 hours, but sometimes we waited one more day before repeating the same process a second and final time.

 

br entry after tung

Following morning after first application of tung oil.

 

After two separate days of applying the tung oil in this way, the floor was finally finished and I was ready to move on to the next room.

 

s's br after tung

2nd bedroom ready for baseboard.

 

It does take quite a few rags to wipe the floors down properly. It’s also worth noting that we were extremely careful once we were done to dispose of the rags responsibly in order to avoid a fire from the oil-soaked rags — a more common occurrence than most people realize.

 

final wipe down in mbr

Anita doing a final wipe down in the master bedroom.

 

In fact, when we thought we were done wiping, we’d go back one last time, walking the floor with rags under our shoes to get the last bit of tung oil that was inevitably still oozing up out of the hickory.

 

kitchen family rm after 1st ct tung

Family room ready for second day of tung oil application.

 

Here’s a close-up after the first coat color change next to the kitchen tile. We really like the contrast between the warmth of the wood and the cool gray of the tile:

 

kitchen wood connection after tung

Family room meets kitchen tile.

 

We also used this tung oil process on our basement stairs, which had hickory treads, along with a landing covered in hickory installed diagonally like the rest of the flooring.

 

 

Paul, from Signature Stairs, was the salesperson for our basement stairs. He made measuring and ordering what we wanted very easy, and he even took the time to stop by right after the stairs were installed and immediately took care of a minor touch-up for us. We’ve been extremely happy with the stairs. In fact, they were so well built we’ve yet to have even a single squeak, which, when compared to our last home, is extremely impressive.

 

base stair steps after tung

 

Because of the amount of variation in the wood, it was a lot of fun playing around with how best to show off the darker pieces. I always tried to keep in mind where furniture would end up, saving the most dramatic pieces for those areas that would remain out in the open and highly visible.

 

mbr b4 tung

Master bedroom ready to be sanded.

 

And it was always exciting to see the transformation from unfinished to very rich looking as the colors in the wood popped after the application of the tung oil.

 

mbr after tung

Master bedroom after tung oil.

 

We really love the color variation from one board to another. The range of colors and textures in the grain is stunningly beautiful. Visually the floors run the gamut from what looks like pine, walnut, tropical hardwood, oak, maple, birdseye maple, some boards with insect damage and staining, to of course clear hickory. This wide variety of colors and textures celebrates the full breadth of what the wood has to offer (as opposed to just clear grade), and it nicely adds to our overall Urban Rustic and wabi sabi design aesthetic for the house.

Here are some close-ups of individual boards showing this wide variation in looks:

 

tropical

Some of the darker boards look like walnut.

 

 

orange w: insect

A few boards had this insect or worm hole damage, including some attractive streaking.

 

 

lighter almost pine

Waves reminiscent of end grain Douglas fir.

 

 

light w: staining

There were several boards with this dark streaking over a much lighter background, as if the wood had been exposed to fire.

 

 

brown light red

The darker colors ranged from this walnut brown (at left) to a much redder, almost exotic tropical hardwood color (on the right).

 

 

lightest

The darker pieces were nicely balanced by many other lighter, more natural toned boards.

 

 

close-up knot w: staining

Even the knots themselves can be quite dramatic in terms of colors and smoky looking swirls.

 

 

beetle pine

There were even a couple of boards that look very much like beetle kill pine.

 

The orientation of the flooring was installed going with the main direction of foot traffic so that it feels like you’re almost always moving with the pattern in the floor rather than against it. In order to maintain this feeling throughout the house, it required changing direction in a couple of areas, for instance, where the kitchen and family room transition to the bedrooms. In these areas I used a transition piece in the door jamb of each bedroom to mark the change in direction.

 

mbr cu floor color variation

Master bedroom complete. Ready to change direction into the family room.

 

When the flooring changes direction it makes for a dramatic visual accent as the contrasting angles meet up. Below is the same area shown above, now with the family room flooring installed (but unfinished) next to the tung oiled master bedroom flooring:

 

family rm mbr wd flr meet

Change in direction from the family room (on the left) to the master bedroom (on the right).

 

 

Living with Oil-finished Hardwood Flooring

The tung oil finish is definitely softer and more prone to damage when it is first put down than a floor covered in a clear coat would be. After move in day I definitely noticed some scuff marks but no major damage. Since then, the tung oil finish has been holding up well.

Granted, we take our shoes off when entering the house, which definitely helps to keep dust and dirt under control, particularly the grit that can scratch wood floors. It also helps that we keep all food and drink in the kitchen. But this would’ve also held true had we gone with a clear coat finish on the wood, so there was no change in our behavior required from our last house to this one.

There’s only been a couple of times that a significant scratch or dent required getting out the Timbermate wood filler, the orbital sander, and the tung oil. In these cases, it was much easier to repair these relatively small spots than it otherwise would’ve been had the same damage occurred under a clear coat.

Overall, the main advantage a natural oil finish has over any clear coat is the amount of texture in the wood grain that’s allowed to come through (especially when viewed on an angle), combined with a matte finish, so the wood tends to look much more natural and warmer looking than it would if covered by multiple coats of clear finish.

 

mbr bath wood transition

Transition between master bath and master bedroom.

 

Nevertheless, I don’t think I would use an oil finish if we had a large dog, or if we preferred to keep our shoes on all the time. Under those circumstances, I’m guessing you’d have to commit to an annual spot sanding and tung oil application, at least in high traffic areas, to keep up with the damage so that it didn’t become too unsightly.

Whether using a natural oil finish, or a more common clear coat, it’s worth exploring the options, including coming up with a few sample boards just to make sure you’ll be happy with the final look. A website like Green Building Supply is especially helpful in this regard, as they offer several brands of each kind of finish in low or no VOC products.

 

finished floor variation

 

It’s also worth noting that the initial wide contrast between the lightest and darkest boards has mellowed over time, so although the contrast is still evident it’s not quite as dramatic as it once was when the tung oil was first applied. Even so, we’re extremely happy with how our wood floors have turned out, and we have no regrets in terms of our choice of wood species or the use of an oil finish.

 

Completing our Wall Assembly: Rockwool Batts, Intello, and Drywall

0

Insulation for Exterior Walls

Once Wojtek and Mark were done installing our continuous insulation on the exterior side of our Zip sheathing (4″ of Rockwool Comfortboard 80), including the first layer of battens (no more errant fasteners through the Zip to worry about), I was able to move inside and begin installing Rockwool Batts (R-23) in our 2×6 wall framing.

Once we had moved on from our first builder, and after reading up on the available options for insulation, we decided to invest in Rockwool insulation, both the rigid Comfortboard 80 on the exterior of our sheathing and the Rockwool batts for inside our stud bays. Although more expensive, particularly the Comfortboard 80 for continuous insulation (used rigid foam would’ve been substantially less expensive), we felt that many of its properties made it worth the added cost.

 

 

In particular, by helping our wall assembly to be vapor-permeable (or vapor open), we felt the Rockwool could help mitigate any mistakes, should they be made, in the wall assembly details. This being our first build acting as a GC, we wanted to add some margin for error wherever we could find it.

More details on our wall assembly and how we finalized details, including our desire to maintain a high level of IAQ, can be found here: Wall Assembly

For environmental reasons, one of our goals was to try and be as “foam free” as possible throughout the build. In addition, beyond just this issue regarding the use of foam (in all its forms: rigid board and sprayed varieties alike), there’s increasing awareness about the carbon footprint of our structures, not to mention the total carbon footprint of our daily lives.

At any rate, if I had it to do over, I would at least seriously consider using reclaimed rigid foam for our continuous insulation over the sheathing (both for the potential cost savings and its status as a reclaimed material otherwise headed for a landfill), understanding that it does reduce a wall’s ability to dry to the exterior. As others have noted, using reclaimed rigid foam in this way may be the best, or “greenest”, use of foam insulation until the construction industry hopefully moves beyond its use altogether as better options become more viable (e.g. wood fiber insulation).

Here are some resources for reclaimed rigid foam:

http://insulationdepot.com/

https://www.reuseaction.com/sales/foam/

https://www.greeninsulationgroup.com/

https://www.repurposedmaterialsinc.com/polyiso-insulation/

I would also consider using dense pack cellulose in the 2×6 walls instead of the Rockwool batts if I could find an installer I was reasonably certain could do the work properly. During construction it felt safer to use my own labor to install the Rockwool batts, thus avoiding the possibility of any gaps in the wall insulation. I was hoping to offset the cost of the batts with my free labor, plus I just enjoyed doing the work. Had we gone with the dense pack cellulose, it would’ve been something I couldn’t do on my own (no equipment or training).

 

lights on in base 4 rockwool

Basement ready for Rockwool batt insulation.

 

Installing the Rockwool batts is fairly easy and satisfying work. They’re much easier to work with than fiberglass batts, which are horrible on your skin and tend to flop around as you try to get them into place. While the Rockwool also produces some irritating fibers when it’s cut (and requires a dust mask like fiberglass), I found that a shower easily washed them away. Wearing long sleeves during installation also easily mitigates this issue.

 

base knee wall w: rockwool going in

Insulating the exterior wall in what will be the basement stairwell.

 

Also, the fact that the Rockwool batts have a friction fit means they don’t require any additional staples or netting to get them to stay put once installed.

 

 

Because of the friction fit, it’s also easy to tear off small pieces to stuff into irregular shaped voids should the need arise.

 

rim joist w: and w:out rockwool

Basement rim joist without and with Rockwool batt insulation.

 

Like the Comfortboard 80, the batts can have some variation from one piece to another, with a change in the amount of density clearly visible. With the Comfortboard 80, this was significant enough that we avoided using the worst pieces, meaning those with the least amount of density (these pieces felt thinner and sometimes even crumbly). Although this inconsistency was still present in the batts, I managed to use almost every piece, saving the least dense pieces for use in some interior walls for sound attenuation (more on this topic below).

 

base kneel wall corner rockwool

Corner of basement with knee wall and rim joists insulated with Rockwool batts.

 

Overall, we were happy with the Rockwool batts, and would definitely use them again should dense pack cellulose not be a viable option. They’re also ideal for a self-build since anyone who’s reasonably handy can install them should they have the time available during construction.

 

rockwool around base beam

Rockwool batts packed into gaps around the basement steel beam.

 

In conjunction with the Intello that would eventually be installed over the 2×6 framing members and the Rockwool batts, we also used Flame Tech putty pads to air seal behind every outlet and light switch box. I had seen them used in a Matt Risinger video for sound attenuation:

 

 

The other option would’ve been to use airtight junction boxes. Here are a couple of examples: Small Planet Supply and 475HPBS.

In order to limit issues with all the air sealing I was doing, I tried to stick with products my subcontractors already used everyday. As a result, since my electrician wasn’t familiar with airtight junction boxes, I opted instead to come in after he had everything installed and apply the putty pads. I found installing them to be straightforward and pretty quick.

 

box label putty pads

 

The putty pads are attached to release paper. Once the paper was removed the pads were easy to mold around each outlet and light switch box.

 

label putty pad

Acoustical putty pads purchased on Amazon.

 

Here’s a completed outlet box:

 

putty pad on outlet

Putty pad molded around every outlet and light switch.

 

The trickiest area to detail for the walls was at the ceiling and wall junction. In our case, the roof trusses sit on 2-2×6’s turned on their sides, which sit on top of the wall’s double top plate. The 2-2×6’s create space for our service cavity under the bottom chord of the roof trusses.

 

extoseal-encors-as-gasket

2-2×6’s on edge, sitting on double top plates. Extoseal Encors acting as gasket once taped from the exterior face of the Zip sheathing over the top of the 2-2×6’s, thus completing an air sealed connection between the exterior (Zip sheathing) and the interior before roof trusses are set in place. More details here: Roof Details

 

Before cellulose could be blown into the attic, we installed Intello to the bottom chord of the roof trusses. At all outside edges the Intello was carried from the roof trusses down over the double top plates of the walls, anticipating the Intello eventually being installed on the walls, which required a connection point between the Intello on the ceiling and the Intello on the walls.

 

ceiling-wall b4 Intello - Rockwool

Ceiling and wall areas before installing Intello on the bottom chord of the roof trusses and Rockwool batts in the walls.

 

After the Intello was installed on the ceiling, a service cavity (or service core, or service chase) was created with 2×6’s screwed to the bottom chord of the trusses through the Intello.

 

string between junction boxes to make sure they're straight

Service cavity with 2×6’s attached to trusses through the Intello. More info on the service cavity here: Ceiling Details.

 

This gap was going to be a dedicated space for lighting and the 3″ Zehnder tubes of our ERV (as things turned out, we didn’t end up needing this space for the Zehnder tubes).

 

bare trusses - intello - intello w: single layer CB 80 - service chase

Intello coming down from the roof trusses to cover the double top plates on the wall.

 

Before installing the Rockwool batts in the walls, I was also able to fill this gap created by the two 2×6’s on their side that sit on top of the double top plates with leftover pieces of Comfortboard 80. The first piece of Rockwool fit snug inside the gap, while the second piece was attached to the first with some plastic cap nails and the friction supplied by the 2×6’s forming the service cavity. Some additional holding power was added at the gable ends by utilizing drywall clips (visible in the photo below):

 

intello onto top plates

Connecting Intello to top plates with a strip of Tescon Vana tape, creating a clean and solid surface for the eventual Intello on the walls.

 

The drywall clips were helpful in lending support to drywall anywhere that adding solid blocking would be time consuming or a physical challenge.

 

nailer for ceiling drywall

These drywall clips worked great in places where the sheetrock needed additional support.

 

Even though we utilized a 12″ raised heel roof truss, and we had 4″ of Rockwool on the exterior of our Zip sheathing, it was important to fill this gap created by the service cavity to make sure our thermal layer was unbroken around the perimeter of the house (4″ Rockwool on the exterior, 5 1/2″ Rockwool in the stud bays). The outside edge of the roof truss is also the most vulnerable to ice damming, so having the 4″ of Rockwool Comfortboard 80 directly below this area where blown-in cellulose would be installed offers some additional thermal performance to the attic insulation.

Another view of this area where roof truss meets the 2-2×6’s standing on their side, creating a gap between the bottom chord of the roof truss and the top plates on the wall below.

 

sealed top of wall from inside

Roof truss on 2-2×6’s turned on their sides, which have been sealed with Pro Clima tapes. HF sealant completes the airtight connection between the Zip sheathing and the 2-2×6’s.

 

If I had it to do over, I would go with a 24″ raised heel truss, as this would offer not only significantly more R-value in this area (for relatively little expense), it would also make any inspection or repairs in this area much easier to deal with.

 

mbr w: rockwool in walls

Installing Rockwool batts in the walls of the Master Bedroom.

 

As each piece of Rockwool batt was installed, it was important to keep any butt joints between cut pieces tight together. Also, once each piece was snug inside the stud bay I finished by gently fluffing the outside perimeter edges so the Rockwool sat as flush as possible to the 2×6 studs, thus maximizing their R-value.

 

mbr rockwool complete

Master Bedroom ready for Intello on the walls before drywall gets installed.

 

 

family rm w: rockwool

Family room ready for Intello and then drywall.

 

 

Intello

With 4″ of Rockwool Comfortboard 80 on the exterior of our sheathing, the code specifies that we could’ve just used latex paint as our interior vapor retarder (Class III).

Again, to improve our margin for error, I felt like it was worth the added expense and time to install a smart vapor retarder (CertainTeed’s Membrain product would’ve been another alternative) to avoid potential issues with diffusion in the winter.

 

 

When I asked a question on GBA about this issue, the consensus seemed to be that the Intello, although technically unnecessary, was a nice bit of insurance.

 

 

It also added a final layer to all of the previous air sealing details. With redundant layers of air sealing, even if small areas experience failure over time, there are still other areas to back it up, thus maintaining our overall air tightness for the long term.

 

intello at frt dr basement

Intello installed in the basement stairwell by the front door.

 

 

finishing intello mbr

Intello in Master Bedroom nearly complete.

 

Sealing the Intello to the subfloor was one of the final air sealing chores of the build. It was deeply gratifying to finally get to this point, especially since drywall and then flooring were up next.

 

tescon on intello at subfloor

Intello taped to the subfloor with Tescon Vana tape.

 

 

intello tvana complete mbr

Intello complete in the Master Bedroom.

 

 

Thoughts on Advanced Framing Techniques

If I had it to do over, I would use less framing around windows and doors, along with using pocket headers instead of the more traditional insulated headers we ended up with. Pushing the header to the exterior sheathing would mean being able to insulate the pocket on the interior side with Rockwool or dense pack cellulose, rather than the rigid foam we ended up with (unfortunately, XPS in our case).

 

family rm w: rockwool

Family room ready for Intello.

 

Before we had to fire them, the two GC’s we were still working with as framing began were unfamiliar with advanced framing techniques, and they were already struggling to comprehend the many Passive House details in the drawings (not to mention many of the conventional details) so, as I’ve noted elsewhere, I had to pick my battles carefully.

Another change I would make would be at points where interior walls meet up with exterior walls. Rather than using ladder blocking to make the connection, which is still better than more traditional methods (creating a boxed in void that’s virtually impossible to insulate), I would utilize a metal plate at the top of the walls to make a solid connection. In addition to making drywall installation easier since it would create space between the two intersecting walls for sheets of drywall to be passed through, it would also make installing insulation, especially batt insulation, much more straightforward with clear and easy access (no horizontal blocking to get in the way).

 

intello at ladder

Intello at partition wall that meets the exterior wall (using ladder blocking).

 

A ProTradeCraft article discusses what builder David Joyce believes is ‘worth doing’ in terms of advanced framing techniques. Perhaps just as important, he points out what he believes can be safely ignored, or is just ‘not worth doing’ when it comes to OVE.

In this Matt Risinger video, architect Steve Baczek delves into some of the key components he uses to optimize advanced framing techniques:

 

 

In addition to the pocket headers, the idea of using header hangers instead of additional jack studs, seems to make a lot of sense.

And here’s a ProTradeCraft video regarding their own take on Advanced Framing:

 

 

One final change to our framing would be opting for 2-stud corners instead of the California 3-stud corners that we have. Although a relatively small change, I think a 2-stud corner is cleaner and allows for slightly more insulation in this vulnerable area.

Clearly each designer, architect, GC, or framing crew will have their own particular views on advanced framing, so there’s room to make individual choices without undermining the goal of balancing structural integrity with reduced energy demand. Local codes, along with the opinion of your rough framing inspector, will also have to be accounted for. My guess is these techniques will continue to evolve, especially if specific products come to market to aid the process (i.e. reduce the amount of framing lumber required while ideally also lowering labor costs, all without negatively affecting the overall strength of the structure).

 

intello kitchen

Intello in the kitchen complete.

 

One final attempt at some additional air sealing was around outlet and switch boxes as they met up with the Intello. With a bead of HF Sealant, it was easy to make an airtight connection between the Intello and the box.

 

cu intello at outlet

Completing connections around outlet and switch boxes with HF Sealant.

 

At doors and windows, I finished these areas off with a strip of Tescon Vana tape, just as I had at the top and bottom of the walls.

 

intello complete br2

Completing Intello around a bedroom window.

 

Because corners tend to be problematic in terms of air leakage, I also added a dab of HF Sealant to these areas for the sake of some added redundancy.

 

lwr lft corn wdw w: intello & tape

Lower left corner of window with some added HF Sealant in the corner.

 

 

upper rgt corner wdw w: intello

Upper right corner of a window just before final piece of Tescon Vana tape is run across the top of the window frame, tying together the Intello and the light blue Profil tape that is air sealing around the window.

 

 

Sound Attenuation

Since we designed our home with a smaller than average footprint, incorporating many Not So Big House principles (roughly 1500 square feet for the main floor, with another 1500 square feet in the full basement below), one way to make the floorplan feel larger than it actually is was to provide some sound attenuation in key areas (we incorporated several other techniques to “expand” the feel of the floorplan that will be discussed in upcoming posts regarding interior design).

For instance, we installed the Rockwool in the long partition wall that runs east-west down the center of the floorplan. This wall helps define the barrier between public areas (kitchen and family room) on the south side of the home and the private areas (bathrooms and bedrooms) on the north side of the home.

We could’ve used Rockwool Safe ‘n’ Sound, but at the time, during construction in the fall of 2017, it was a special order item in my area, whereas the batts were already in stock, both for my main 2×6 partition wall, a 2×6 plumbing wall, and the remaining 2×4 walls that we felt could benefit from the Rockwool.

In the photo below, the Rockwool in the main east-west partition wall is covering the refrigerant and drain line for one of our three Mitsubishi heat pump heads, along with the usual electrical conduit for outlets and light switches.

 

rockwool 2nd br entry hall

Rockwool added to some interior walls for sound absorption, thus reducing unwanted sound transmission between certain spaces.

 

Here’s another view of this partition wall, this time from the opposite side inside the second bedroom:

 

rockwool 2nd br interior side

Same section of east-west partition wall from inside the second bedroom.

 

We also added Rockwool to the wall that connects the master bath to the 2nd bedroom bath, and between the 2nd bath and 2nd bedroom. The Rockwool was even added to the wall between our kitchen and utility room, where we have our washer and dryer, in the hopes that it would limit the amount of noise coming from the machines (which it thankfully has).

 

rockwool bath walls

Rockwool in bathroom wall around main waste stack.

 

Although this doesn’t make for a totally sound proof connection between spaces (we weren’t prepared to take things that far — roughly equivalent to air sealing a Passive House in the amount of detail required), the ability of the Rockwool to significantly muffle sound between rooms is quite impressive and, for us at least, well worth the effort and added expense.

 

rockwool kitch - utility

Rockwool in the wall between the kitchen and utility room.

 

For instance, while standing in the master bathroom, should someone be running water or flushing the toilet in the 2nd bathroom directly on the other side of the wall, the majority of the sound that reaches your ear comes by way of the master bedroom doorway, not through the wall directly. Out of curiosity I tested this idea with music playing on a portable stereo in the 2nd bathroom with the same results — sound through the wall is dramatically muffled, while the same sound that easily travels out of the bathroom and makes it way via the bedroom doorway is crystal clear. With the door to the 2nd bathroom and our master bedroom door closed, this same sound is obviously further reduced.

 

 

It’s also nice to watch TV in the family room and know that as long as the volume is at a reasonable level you’re not disturbing anyone trying to sleep or read in the two bedrooms. This kind of sound attenuation also adds a level of privacy to the bathrooms while they’re in use.

And, again, it’s not that no sound is transmitted from one room to another, rather it’s almost entirely limited to doorways, thus significantly reducing the overall impact of the noise that is transmitted. In other words, our goal was rather modest, we were just after significant sound absorption, not sound proofing (e.g. the level of noise cancellation required in a professional recording studio or a high-end home theater room).

 

 

As a result, I would definitely use Rockwool for sound absorption again. In fact, I can’t imagine going without this kind of sound attenuation (or something akin to it using other products or techniques outlined in the videos above) now that we’ve been able to enjoy it in our new home. It effectively prevents the issues often associated with so-called “paper thin” walls.

Arguably, addressing this issue of unwanted sound transmission is even more important in Passive Houses or high-performance homes that are already much quieter than conventional homes because of the extensive air sealing and well above code levels of insulation. In our own case, outside noises either disappear entirely or are significantly muffled — this includes a commuter train a couple of blocks away.

As a result, any noises within the home itself become much more pronounced since they don’t have to compete with the typical noises coming from outside the home. For instance, when we first moved in the fridge in the kitchen was easily the most obvious, consistent sound in the house. After a couple of weeks it just became background noise we’ve grown to ignore, but it was surprising just how loud it was initially, especially our first few nights in the home when everything else was so quiet.

In addition to excessive air leakage and obvious temperature swings between rooms, along with poorly sized or placed window layouts, the lack of any sound attenuation between rooms is one of the issues we notice the most when we’re inside more conventionally built homes. Much like all of the conveniences associated with a modern kitchen, it’s easy to take something like effective sound attenuation for granted until you’re required to go without it (e.g., in the case of kitchens while on a camping trip or waiting for a kitchen to be remodeled).

With all of the Rockwool batts in place, and the Intello installed over the exterior walls, drywall could finally go up.

 

 

Drywall

We went with USG 5/8″ EcoSmart drywall (GBA article on EcoSmart). We chose the 5/8″ over 1/2″ mainly for added durability and some slight sound deadening between rooms.

 

 

I had read about Certainteed’s AirRenew drywall, but it sounded like the only VOC it absorbed was formaldehyde, which, if I understand the issue correctly, can be safely avoided with the use of appropriate cabinets and furniture. If memory serves, AirRenew works by utilizing a compound similar to triclosan, meaning a biocide, which some believe can have potentially serious health effects. It’s not clear to me, even now, whether the use of AirRenew drywall makes sense, or exactly what compound (or series of compounds) are utilized to absorb the formaldehyde since Certainteed has remained silent on this point, claiming the information is proprietary. Nevertheless, it has a Declare label, so ILFI must believe it’s reasonably safe to have on painted ceilings and walls.

At any rate, we wouldn’t be bringing in any new furniture that would have elevated levels of VOC’s (including flame retardants) once construction was complete. Since our last house was significantly larger, roughly 2,800 sq. ft., it was fairly easy to downsize, donating or giving away what we couldn’t use in our new house, while holding on to our favorite and most useful pieces. It also helped that we never really filled up our last house (e.g. we never got around to purchasing a formal dining room set), so we didn’t have as much “stuff” to discard as we might have.

Moreover, by being mindful of every finish we create or use (primers, paints, wood flooring, grout sealer, caulks and sealants, kitchen cabinets etc.), along with any other products we might bring into the new house (e.g. surface cleaners, new furniture, fabrics, even perfumes and colognes, etc.), we’re hoping to maintain a high level of IAQ.

The International Living Future Institutes’s Red List and their database of Declare products were a big help to us, even though we’re not pursuing any kind of certification with them. The Greenguard certified label was also helpful, in particular when it came time to choose tile and grout.

By consciously choosing every product and material that comes into the home, it’s possible to at least reduce our exposure to harmful VOC’s and chemicals. While still imperfect (Who can you trust?), these kinds of programs do allow designers and homeowners to take some control over the environments they’re creating and living in, which is empowering to a degree. Far better if the US regulatory bodies operated under a precautionary principle model when it came to industrial products.

Frankly, in a rational system, one that was truly looking out for the best interests of consumers, this kind of research — time consuming and frustrating busy work to put a finer point on it — would be considered laughable if not horrifying. In a rational system it would be safe to assume that any product for sale, apart from some careful instructions on their use and disposal, would be safe to have inside your home without having to worry about short or long term health implications. Nevertheless, if unintended health consequences are to be avoided during a renovation or a new construction build, consumers have little choice but to do the necessary homework (or pay someone else to do it for them) and be as thoughtful as possible with their selection of materials.

 

drywall family rm

Kitchen and family room after drywall was installed. Ready for primer, paint, and flooring.

 

Now that all of the elements of our wall assembly were complete, it was time to have some fun with final finishes: flooring, wall colors, wood trim, doors, kitchen cabinets…

Siding Part 2: Charred Cedar (Shou Sugi Ban) with Natural Accents

0

Building a Passive House: Science, then Art

We wanted the process of creating our new home to be fun, so from the outset we approached the build as a mix of science experiment and art project.

For the structure, this meant utilizing building science research to properly air seal, insulate, and ventilate to ensure that we ended up with a house that’s hopefully durable, stingy with its use of electricity, and that functions well on a daily basis for many years to come.

In terms of design, it meant spending an inordinate amount of time on the floor plan, carefully defining how we would move through and live in the structure, while also carefully considering the seemingly infinite options when it comes to finishes, both for the interior and the exterior of the home (with an emphasis on low or no VOC products to protect indoor air quality) .

With most of the wall assembly details finally in place on the house, putting up the charred cedar siding represented the first real transition from science to art. And with Passive House details mostly taken care of, we could begin to make decisions in real time regarding how we wanted the house to look, both inside and out, in terms of finishes.

Since our house is relatively small, at least by recent American standards, many of the sins associated with McMansions were easy to avoid (McMansion Hell faces lawsuit).

 

 

On a side note, if trends continue, owners of these McMansions may be in for a rude awakening when it comes time to sell:

 

South Barrington McMansions Languishing
McMansions at Fire-Sale Prices

 

Affluent Chicago suburbs aren’t alone in facing this dilemma:

 

McMansions No One Wants
Killing the McMansion

 

If such reports prove to be accurate, and tastes really are fundamentally changing, perhaps it can be tied to a growing awareness of climate change and its implications. After all, these larger homes tend to be energy hogs, not to mention maintenance nightmares because of poorly planned and executed construction details — in part, a consequence of preferring quantity over quality. Moreover, there’s a growing chorus of voices espousing the benefits of simplicity (e.g. the tiny house movement, or minimalism). This is often wedded to an appreciation for the handmade or artisan object, as opposed to the mass-produced, and typically homogenous, product.

Nevertheless, it seems doubtful that the suburbs will ever be abandoned wholesale, and for any number of reasons.

For more on suburbia, go here: Building in the Suburbs

 

 

Massing: Basic Forms

For our house, the structure is a basic rectangular box with a gable roof (long sides face north and south with the gable ends to the east and west). It’s not unlike the basic form most children would come up with if prompted to draw a house. We really like the simplicity of this kind of roof style for aesthetic reasons, but also for the ease of installation and the long-term durability of the roof.

 

When we concentrate on the essential elements in design, when we omit all superfluous elements, we find forms become: quiet, comfortable, understandable and, most importantly, long-lasting.
—Dieter Rams

 

Bronwyn Barry has even coined a hashtag for this use of very basic forms,  #BoxyButBeautifulespecially popular with Passive House design since it can help eliminate potential thermal bridges while making air sealing more straightforward.

 

1st layer rockwool at frt door

Wojtek installing Rockwool around the front door, next to the garage.

 

We tried to avoid having the garage as part of the front of the house, in particular having the garage door facing the street (a look I’m not fond of), but physical limitations, in terms of the lot itself, left us with little choice in the matter. So rather than repeat the gable roofline of the house, we went with a shed roof for the garage. The shed roof adds some visual interest, while it also ensures that any rainfall in this area immediately gets sent to the north side of the house where we want it — away from the foundation as well as bypassing the driveway altogether (water flows to the north on our street).

We also felt that these two rooflines fit in well with our Urban Rustic design aesthetic. As a mash-up between early 20th century city and farm, both the simple gable and stark shed rooflines would be equally at home in an agricultural setting or on a densely packed inner city block.

In addition, it was important to us to have some fun with color, so on the exterior using black charred cedar with some natural highlights would give us the bold look we were going for, while accent walls inside with bright, playful colors would help bring the interior to life, accompanied by hand-made or hand-selected decorative objects in various bold colors.

When done well, this child-like use of color can lend a space or structure a real sense of vibrant energy.

 

 

Already a fan of Jack White’s use of color for album artwork and the staging of live shows for The White Stripes, I appreciated the way he chose to decorate the exterior of his Third Man Records in Nashville. A form that was as basic as it gets — single story brick warehouse — becomes vivid and hard to miss, in a good way, with a splash of color on what would otherwise be a monochromatic black box. The “insert” around the front door, offering a little shelter with some nice shadow lines, along with the crisp signage finish off what is a clean, sleek, but still playful, look.

 

3rdmanrecords

Facade of Third Man Records in Nashville.

 

He’s done something similar with the interiors, in this case for the Detroit store:

 

 

 

Siding Layout for our Charred Cedar (Shou Sugi Ban)

Since we were building custom, rather than working within the constraints of tract housing in a larger subdivision (as we did with our first house) where many of the design choices are already made for you, we knew we wanted to take some chances in terms of materials and layout.

It also helps that we’re in a neighborhood with mixed architectural styles, including single-family homes and townhomes, with structures and exteriors running the gamut between old and new, as well as traditional and contemporary. We felt like this gave us more latitude to try something different without upsetting the overall look of the neighborhood.

With a smaller structure and only two basic rooflines, we knew any experimentation or design risk was going to have to occur at the level of siding materials and their orientation.

Knowing its weaknesses, I never imagined using wood for any part of the exterior of my house should the day come when I could build my own home. Brick, stone, metal, any number of man-made products (e.g. PVC or Boral), all seemed like the smarter way to go to avoid maintenance headaches and costly repairs. I assumed we’d end up using Hardie plank siding, or one of their paneling configurations, or maybe even some kind of metal product.

But then I came across charred cedar, or shou sugi ban.

It’s hard to remember now exactly where I saw it for the first time since it would’ve been before 2015 probably, but I think it was a Dwell magazine profile of Terunobu Fujimori’s work. I may have even first seen the same architect featured in Philip Jodidio’s book Architecture Now! (HOUSES, volume 1). Regardless, once seen, it was hard to forget.

 

 

When we first began working with our initial builder, Evolutionary Home Builders, I brought them some rudimentary drawings I had done, expressing our desire to try something creative and out of the ordinary, especially in terms of siding layout.

 

sketch black:gray

An early drawing of mine showing mostly gray with black accents for siding.

 

Instead, their architect, Patrick Danaher, came back with an extremely conservative layout, one that’s fairly omnipresent when looking at single story ranch homes in the Chicago area.

 

ehb s and w elevations

Proposed siding layout from Evolutionary Home Builders.

 

Our use of charred cedar would have been the one change from what is typically a combination of brick or stone on the bottom 2/3 of a wall with painted or stained wood up above, usually with a limestone ledge in-between to visually and physically separate the two materials.

 

brown - brick typical layout

Popular way to break up the cladding on a ranch home, in this case mixing brick and wood.

 

 

brick w: light sd

Another example of the same layout, this time with lighter colored siding.

 

The photos above are included not to disparage this look, which I actually like, but to give specific examples from our area of this traditional layout; one that’s seen on probably thousands of homes in just the Chicago area alone. Although attractive, I couldn’t help but feel that this layout was a cliched repeat of what’s already been done countless times before, which, nevertheless, would’ve been entirely appropriate had we been asking for a more traditional look.

Instead, it was pretty shocking to get their initial drawings since I had clearly expressed our willingness to think outside the box in order to experiment with something unique and fun, even avant-garde (or, at the very least, contemporary). The fact that Brandon Weiss (the owner) and Eric Barton (chief field officer) were also in these design meetings and they, too, had nothing to offer on this point did not seem to bode well for our project.

Initially I lacked the confidence to argue against Patrick’s suggested layout (they’re supposed to be the experts, right?). I just assumed my ideas were simply too bizarre to work. Over time, particularly as I saw how they did things with a lack of care and a lack of attention to detail (see below), combined with looking around online and seeing how other projects experimented with unique siding layouts, I eventually realized there was no reason not to try something bolder and more well thought-out.

In the meantime, I put together a fairly large sample board, mixing the charred cedar with the natural cedar mostly in accordance with their initial suggested layout:

 

charred cedar sample board with natural

Sample board with natural and charred cedar.

 

This sample board, although attractive, confirmed a couple of things I was worried about:

First, the layout was way too traditional looking, even with the charred cedar.

Second, this amount of natural cedar around the house would be a pain to maintain over the years, costing me significant time and energy, if not money (the maintenance labor would be DIY), probably requiring a fresh coat of tung oil at least every other year, if not annually. Since we wanted a natural look, any kind of traditional spar varnish, or other shiny clear-coat, didn’t seem appropriate. Although one option, open to us even now, is to just let the tung oil break down and let the natural boards turn gray over time (although it can be a somewhat unpredictable process).

Finally, since we felt the charred wood next to the natural was visually so electric, I thought it best to limit the combination to try and heighten the effect.

 

natural-and-charred-together

“Natural” cedar, treated with tung oil, next to the charred cedar.

 

In the end, Patrick’s suggested layout struck me as rather staid and uninspired (if not, to put it bluntly, half-assed).

On a side note, we didn’t have much luck with the three or four architects we came across during our build. They seemed mostly disinterested when they weren’t outright lazy. See the floating toilet in our initial drawings:

 

floating toilet

First look at our initial drawings from Evolutionary Home Builders — note the floating toilet in the middle of the basement floor.

 

No one — not the architect of record, not Patrick, not even Brandon the owner — could be bothered to give the drawings even a cursory edit/revision before handing them over to us. This certainly planted the seed, along with their generally disordered style of communication, that all was not well regarding the level of care, or even interest, our project was going to receive from them for the duration of the build.

I guess the situation could’ve been even worse:

 

 

Unfortunately, the issues we had in establishing our siding layout were emblematic of our overall experience building a new house, whether it was with architects, general contractors, or some (but certainly not all) of our sub-contractors: we were shocked by the overall lack of integrity, curiosity, and workmanship.

Far too often it felt like rather than having partners in an exciting process we were actually being held back by people who didn’t seem to really enjoy what they did for a living. Making matters still worse, not only did they seem bored, but the work itself was often mediocre when it wasn’t clearly incompetent.

Unfortunately, even acting as our own GC didn’t help matters, since a competent GC with a long track record has had the time to develop relationships with subcontractors he or she can trust to deliver in terms of schedule and craftsmanship.

I keep coming back to these issues in multiple blog posts mainly as a warning to others who are considering pursuing their own self-build (or even hiring a general contractor to do the work for them), encouraging them to have realistic expectations and to better understand just what they’re up against when it comes to the construction industry — particularly if they wish to try anything new or different.

At any rate, with the decision made to use the charred cedar, we went ahead and prepped the wood before construction began. You can read about the details here:

 

Cedar Siding Delivered…
Oiling Charred Cedar Siding

 

 

Installing the Charred Cedar

With all of the components of our wall assembly in place, Wojtek and Mark finally started installing the charred cedar on the house, beginning with the garage. This was easily one of the most exciting moments of the build.

I think Wojtek and Mark were secretly excited, too, if only because they were finally finished with all of the insulation and layers of strapping.

 

1st pce char going on

Wojtek and Mark installing the first piece of charred cedar on the south side of the garage.

 

 

1st few rows south sd sd gar

Wojtek and Mark making progress on the south side of the garage.

 

It was more than a little exciting to see the first pieces going up, especially considering how far off-track our project had gotten early on.

 

s garage char 1:2 way

First few rows of charred cedar going up on the south side of the garage.

 

With no choice but to have the garage thrust forward and so prominent on our front elevation, we just had to make the best of the situation. One way of addressing it was to shake up the orientation of the charred cedar. Since the house itself was going to be all vertical (we just find it more interesting), it made sense to change the north and south sides of the garage to horizontal.

 

south garage 1st pce east wojtek and mark

Wojtek and Mark starting the east, vertically oriented, side of the garage.

 

In doing so, on the south side by the front porch this horizontal orientation would draw in the viewer’s attention, hopefully pointing it towards the front door of the house. Even as you walk up the front steps this horizontal orientation, I would argue, does its subtle magic fairly well. At the street, or out in the front yard, this effect seems to work even better.

 

garage south sd start east wojtek and mark

Finally getting to see the combination of horizontal and vertical orientations combined.

 

In mixing the siding’s orientation in this way it also helps to show what the material can do visually. Lastly, having these two sides of the garage oriented horizontally should also emphasize that this portion of the structure serves a different function (i.e. garage vs. house).

After having the charred cedar hidden away in storage for so long, it was extremely rewarding to finally see it going up.

 

close up char on garage texture

Close-up of several charred cedar boards.

 

It was nice to see that it was every bit as beautiful and interesting to look at as we had initially thought while making it.

 

oil and texture on garage sd

The range of textures and subtle variation in color makes the charred cedar truly unique.

 

In keeping with our Urban Rustic aesthetic, the charred cedar — which would look just as good on a farmhouse or outbuilding as it would on an early 20th century artisan workshop or small factory warehouse — also represents our desire to bring in elements that reflect the Japanese notion of wabi-sabi.

 

 

For example, stressing the wood with fire instantly gives it an aged appearance, and the amount of variation also makes clear it’s a natural material, as opposed to an industrial product manufactured to meet narrow and precise tolerances, with the goal being absolute uniformity. Whether it’s the knots, the lighter or heavier areas of char, some areas of natural cedar peeking through, or the ‘oil stain’ marks, the charred cedar emphasizes and celebrates imperfections and inconsistencies in the wood, sometimes to great effect even within a single piece — to the point where the most singular board catches your eye and you can’t help but linger over it. Instead of being annoyed by difference, the charred cedar actually encourages you to go looking for the most unique boards.

 

 

Following installation guidelines, Wojtek and Mark used only stainless steel nails to attach all of the cedar siding.

 

garage sd out front door

View of the garage from the front doorway.

 

 

south gar sd mostly done mark in bg

First look at a large section of the charred cedar siding installed.

 

 

south gar sd bringing you in to frt dr

A second view.

 

With the south side of the garage mostly complete, Wojtek and Mark could move on to the north side.

 

n side garage furring and coravent

North side of the garage prepped and ready for siding.

 

 

1st pce north gar sd

First few pieces going up on the north side of the garage.

 

For the soffits, we were initially going to use another Cor-A-Vent product, their PS-400 Strip Vent to complete our ‘cold’ roof assemblies, which on the house already included a ridge vent.

 

Cor-A-Vent PS-400 Box

Box of PS-400 strips for soffit ventilation.

 

But after opening the box and really taking a look at the product, they just seemed really flimsy. I’m sure they work fine, but holding them in your hand doesn’t exactly breed confidence. Also, seeing Wojtek’s stink face as he carefully studied a couple of pieces only confirmed that we needed another option.

After looking around online, I ended up finding a product at a local Home Depot.

 

mesh for soffits

Metal mesh product we used for soffit ventilation.

 

Not only did the metal mesh appear more substantial, I thought it would look better with the charred cedar than the PS-400, making for a nice contrast with the wood. I also really liked how it revealed some of the structure through the mesh for a more raw, unfinished look — again, in keeping with our Urban Rustic design goals.

 

close up soffit screen complete

Close-up of the soffit metal mesh installed.

 

 

outside view n gar soffit

First section of soffit going up with the metal mesh in place for ventilating the roof.

 

 

mark w: gar soffit screen mostly complete

Mark waiting for a cut, with most of the soffit and siding installed on this side of the garage.

 

 

garage soffit w: screen complete

Section of soffit complete with metal mesh installed.

 

 

north garage sd soffit complete

North side complete, with the frieze board finishing off the rainscreen details.

 

We were going to copy a Hammer and Hand diagram for the top of a wall, in particular their rainscreen detail for the frieze board:

 

https:::hammerandhand.com:best-practices:manual:4-rain-screens:4-1-top-wall:

Courtesy of Hammer and Hand and their Best Practices Manual.

 

After talking through the details, Wojtek and Mark found the notch in the frieze board to be an overly fussy detail, preferring to keep this piece fully intact. To do this, they ripped down 2×2 furring strips to a thickness they could use as blocking behind the frieze board, pushing the frieze board out just beyond the plane of the siding, leaving a roughly 1/4″ continuous gap.

Apart from slightly more room directly above the Cor-A-Vent strip, the end result is much the same — a small gap between the frieze board and the top piece of tongue and groove siding allows air behind the siding to flow freely up and out of the wall assembly through the top of the Cor-A-Vent strips.

The Cor-A-Vent strips are kept about a 1/4″ below the initial blocking directly above them.

 

wd view top of garage rscreen

Top of the wall is ready for siding, and for establishing the air gap for the wall’s rainscreen.

 

 

mark blocking 4 frieze and vent

Mark adding blocking in preparation for the frieze board to finish off the top of the wall.

 

A close-up view from the side showing the details for the rainscreen at the top of the wall:

 

wide view garage frieze w: blocking sd

Top of the Cor-A-Vent and the top piece of siding. Frieze board being installed over blocking in the background.

 

On the house, the guys adjusted the placement of the frieze blocking, lowering it so that it was in line with the first layer of 2×4 blocking, thus closing off any unnecessary open space behind the frieze board.

 

close up rainscreen gap n garage

Close-up of the soffit with frieze board and air gap for the rainscreen directly below it.

 

With the north and south sides of the garage mostly complete, the guys moved on to the front of the garage.

 

garage south sd start east wojtek and mark

Wojtek and Mark moving across the front of the garage with the charred cedar now oriented vertically.

 

The change to our wall assembly — using 2×4’s instead of 1×4’s for our first layer of strapping so that the siding could hang down just past the metal flashing and Rockwool on the foundation — had one nasty unintended consequence for the north side of the house: the 14′ boards we had purchased, charred, and oiled were now about 3″ too short — they were initially supposed to sit just above the flashing and Rockwool, not hang down several inches below this area.

With little time to spare, since Wojtek and Mark were cruising right along, my wife Anita and our friend Maria worked tirelessly to get longer boards completed in time, while I tung oiled each board almost as soon as it was burned.

 

char as garage sd east goes up

Anita starting to burn additional boards as Mark and Wojtek keep working.

 

 

most of east side garage complete

Mark mostly done with the front of the garage.

 

For the front of the garage, Wojtek and Mark repeated the same rainscreen details, only this time with the siding oriented vertically.

 

sd soffit w: frieze for vent gap

Overhang on the front of the garage: frieze board completing the rainscreen, soffit boards, and rake boards being installed.

 

 

garage soffit and rake

Closer view of garage soffit and rake being installed.

 

 

garage side view strapping vent sd

Cut away view of the siding with a rainscreen set-up behind it.

 

Wojtek and Mark did a nice job with the soffits at all of the outside corners.

Note the ‘tiger striping’ on the bottom edge of the rake fascia board, along with the variation in color and texture from one board to another — an example of ‘perfectly imperfect’ according to wabi-sabi principles — including the subtle pencil marks for their cuts (still visible almost two years later).

 

outside corner soffit w: tiger stripe

Close-up of the garage soffit at an outside corner.

 

 

nw corner garage start n sd

The guys making the transition from the garage to the north side of the house.

 

For the north side of the house I wanted to keep the charred cedar a monolithic black. The only real relief from this was the change in orientation of the siding from the north side of the garage to the house, along with a single window for my daughter’s bedroom.

 

north side char

Charred cedar on the north side of the garage and the house.

 

Knowing that the other three sides of the house would be getting some natural cedar accents, I thought keeping at least one side of the house entirely black would make for a nice overall effect.

 

mark at mechanicals

Mark working around the mechanicals on the north side.

 

The Pittsburgh Steelers did something similar, having their team logo on only one side of their helmets, leaving the opposite side a solid black. I always thought this was visually striking.

 

 

 

 

Installing the Natural Cedar Accents

The west side of the house would be the first opportunity to use some of the natural accents. Based on my initial drawings and the sample board, I wanted to limit the natural as much as possible while still allowing it to have a strong visual punch.

 

stacks of nat'l and char in garage

Natural cedar boards tung oiled and ready to be installed.

 

I wanted to take advantage of the drop-off in grade that’s present in the backyard by using the natural boards around the window on the left. In doing so, it would draw attention to the change in grade, emphasizing that the left side of the west facade is significantly taller than the right side.

Using the structure of the window itself as a guide would help me to decide exactly how many natural boards to use.

 

west 1st cple pcs nat'l wojtek and mark

 

In addition, I knew I wanted a more informal look, making it consistent with our Urban Rustic and wabi-sabi design goals, so using an odd number of boards in an asymmetrical way would help achieve this.

 

west after 1st few nat'l pces

Adding natural boards around the window on the west facade.

 

By focusing on the window in this way, 11 natural boards turned out to be the right number. Looking closely at the way the window itself is framed (large center piece of glass surrounded by two smaller pieces), if we had gone with fewer boards the natural would be too far away from the dead center of the window opening, so insufficiently ‘wrapping around’ the window, while any additional natural boards would’ve risked being too close to dead center, making the overall look too symmetrical.

Obviously, a lot of the details regarding these decisions are subjective, but having some kind of framework for a final decision is nice to have, rather than going strictly on instinct alone.

 

mark just past nat'l on west

Mark completing the natural accent around the left window.

 

It was only after Mark went back to the black charred siding that I was sure we had exactly the right amount of natural boards around the window.

 

mark and wojtek west sd after nat'l

Mark approaching the center of the west facade.

 

By going just past the first piece of glass, the natural boards have a nice asymmetrical look to them — hugging or slightly wrapping around the window just enough, making a connection, but not too much.

After so many months of planning, worrying, and waiting — and then finally getting to see this combination of charred cedar with the natural cedar — watching the siding go up was easily one of the most gratifying parts of the entire build.

 

wojtek burning cut edge

Wojtek and Mark were nice enough to take the time to char all the cut edges.

 

When the guys got to the middle of the west facade they were in for a nice surprise — dead center of the peak lined up perfectly with the seam between two boards.

 

lking up sd at west peak

Looking up at the center of the west facade.

 

lking up sd at west peak wider view

Wider view of the peak on the west facade.

 

On most houses the back side tends to be rather boring, as if it were mostly forgotten about (at least in visual terms). In part this is no doubt because the details used to create visual interest are normally reserved for the front elevation where they can show off to the street. Where the front might be covered with stone accents, metalwork, elaborate lighting fixtures, or some other decorative accents, the other three sides tend to blend together as the basic siding material just continues its standard layout or pattern around the perimeter of the house. These decorative accents add cost to a build, so it makes some sense to reserve them for the side of the house that most people will see.

 

west facade sd after peak

 

Sometimes, however, this effect can be jarring. In a Chicago suburb there’s a house that uses elaborate stonework on the front facade, which in this particular case is actually two sides that face the street, but when you walk around to the back of the home the siding material transitions to wood. Because the transition is so abrupt, and the quality of the materials is so different, in terms of both cost and visual impact, it almost feels like walking behind the elaborate facade of a building on a movie set to discover it’s only a single wall propped up to mimic a much more substantial building. This lack of cohesiveness lends a kind of sadness to the house, as if it announces that the elaborate plans for the exterior cladding were ruined by unexpected budget constraints.

 

west sd mostly done guys start south

 

Consequently, we felt it was important to give each side of the house its own distinctive face. Because of the size and layout of our lot, and the way the houses next to us are positioned, it’s difficult to view more than one side of our home at any one time, which only encouraged us to make this a priority.

 

west facade after sd b4 gutters

West facade mostly complete.

 

Quick side note: these windows on the west facade are the ones with Suntuitive glass. Because of this, we’ve never required any blinds or any protection from glaring afternoon sun. As a result, we’ve been able to enjoy a constant, unimpeded view of the backyard.

More than a year after the siding had been up my daughter and I were in the backyard doing some gardening when she pointed out that the back of the house looks like David Bowie’s Aladdin Sane makeup. We have a magnet of Bowie on our kitchen fridge. She has a point.

It’s not difficult to see a face in the facade, and the music reference fits in nicely with our rock ‘n roll theme for the interior of the house.

 

 

The effect of the natural cedar is also reminiscent of racing stripes, especially those seen on sports cars or muscle cars, or even motorcycles (e.g. the graphics on racing sportbikes). This was partly done with tongue planted firmly in cheek — if high-performance cars and motorcycles look good with racing stripes why not on a high-performance home? — but mainly because I’ve always enjoyed the visual power of these types of graphics.

 

sd west b4 gutters

Waiting for gutters and downspouts.

 

Also in keeping with the racing stripes idea, we wanted the house to look distinctive on every side, much like the well-designed shape of the most memorable sports cars or motorcycles that look good from almost any angle.

At the beginning of each episode of Comedians in Cars Getting Coffee Jerry Seinfeld does a great job introducing each vehicle, explaining why some of them — even if decades old and built with what we consider now to be obsolete technology — can still elicit such intense feelings of affection or outright joy.

 

 

And there’s no shortage of design options when it comes to racing stripes and their various layouts.

Many are symmetrical, for instance, a double stripe laid down in thick pairs with little space between. This style is popular on the hoods of muscle cars.

 

Shelby stripes

Shelby Mustang. This one is more elaborate with the added red stripes along the outside edges.

 

Sometimes the striping is fairly subtle, arguably more of a pinstripe effect:

 

 

And of course the racing stripes don’t always have to impart a sense of speed or domination, sometimes they’re a nod to smart, even cute, styling.

 

 

Motorcycle graphics are probably the most extreme version of racing stripes, many of them even outlandish, but mostly in a vibrant, fun way.

 

 

Ducatis look great when they’re fitted out in monochromatic red, or even all matte black, but white stripes definitely add another dimension to the overall look of the bike:

 

 

This is one of the more iconic layouts, from Honda’s factory MotoGP racing team, Repsol.

 

repsol full

 

I think the layout and color combination looks even better in close-up as a screensaver:

 

repsol screen saver

Vivid screensaver.

 

My favorite racing stripe layout is a combination of one thick and one thin, probably because of the asymmetry since it’s typically applied off to one side, or offset, rather than applied directly down the center.

 

love bug

“Herbie” for sale in an antique shop in Cincinnati.

 

Another example of this thick-thin combination:

 

racing strip hash marks wheel

Hash marks on the wheel of a Dodge Charger.

 

The other nice thing about the racing stripe idea was that, as a visual motif, we could carry it over into some of the interior finishes. This is something we intended to do with the charred cedar as well — using an element from the exterior to decorate a part of the interior.

The blue-green-white combination, long associated with Kawasaki, would prove to be the most overt example where we would borrow some famous imagery from motorcycle racing and apply it inside the house in a new context, but for much the same reason, namely trying to impart a sense of playful energy and added brightness (more on this in a future post).

 

 

At any rate, I really enjoyed coming up with a kind of narrative for the look of the house, hopefully showcasing, in a unique way, what the charred cedar and the natural boards can do visually as siding on a home.

For the south side, we decided to use the kitchen door as our guide for putting up the natural cedar, while the front door would be used on the east-facing facade.

Another element around the two doors to consider was exterior lighting. A single fixture at each door would project an upward and downward concentrated beam of light, highlighting the natural boards in the dark as they pinpoint their focus on this band of natural wood surrounded by total blackness.

 

mark ready for natl at kitch

Mark almost ready for the natural cedar boards.

 

We started the natural boards to the right of center of the door’s glass, cheating a bit so that they started pretty much directly above the door handle.

 

1st couple at kitch

 

It also worked out nicely that the natural boards ended up in an A-B-A pattern from back of the house to front; meaning to the left of the window in back, to the right of the kitchen door, and then to the left of the front door.

 

mark past natl at kitch

Mark and Wojtek moving past the natural cedar boards.

 

We ended up at 5 boards for this side of the house, allowing the striping to stay proportional to the size of the opening while sitting just beyond the eventual light fixture. It also helps that the kitchen door, made up largely of glass and a neutral gray color, doesn’t take any attention away from the natural boards.

 

kitch dr

Kitchen door with its charred and natural cedar.

 

At the front door, I initially pictured the natural boards installed on the right side of the entryway. In two dimensional drawings this seemed to make sense, but after seeing everything in place in reality, it became pretty clear that to the left of the front door would be far better. To the right of the front door would’ve meant the natural boards would look ‘squeezed’.

 

1st pce nat'l at frt dr

Putting up the first piece of natural cedar around the front door.

 

 

mark finishing up nat'l at frt dr

Mark nailing in the first couple of natural boards.

 

Starting the natural boards just outside where the light fixture will sit, we ended up at 7 total boards for around the front door. Since the front door is slightly larger than the kitchen door, and it’s the main focus of the house, it made sense to have slightly more natural boards in this area.

Many thanks to Wojtek and Mark for their patience in playing along as I figured out exactly how many natural boards to use, and exactly where they should be positioned.

 

mark just after nat'l at frt dr

 

As each section of natural boards went up, it was evident that beyond a certain point the racing stripe effect would be lost: one too many boards and it wouldn’t look right, in effect, overpowering the opening; too few boards would mean not enough impact — less like a proper decorative accent and more like a disconnected mistake.

 

sd done b4 frt dr

First look at the east facade fully sided. Our little black box almost complete.

 

Bob Riggs, his son Brian, and Jason were nice enough to come back to install my front door for me. We used the Hannoband expanding foam tape to seal around this door, just as we did for all of the other windows and the kitchen door.

Check out the details of their installation here:

Windows, Doors, and Suntuitive

 

Brian Jason Bob install front door

Brian, Jason, and Bob install our front door.

 

 

frt dr frt yard

Front door just after installation.

 

The front porch with its charred cedar, natural cedar, and the bright red door reminds me of Coco Chanel’s famous “little black dress ensemble” — the charred cedar the little black dress, the natural boards the string of pearls, and the front door the splash of red lipstick.

 

 

Our shiny front door is the one sleek, clean, and clearly new element of our exterior. This contrast between industrially produced, sharp looking object and the burnt and heavily knotted wood in some ways personifies the Urban Rustic aesthetic.

 

frt dr clup b4 trim

Close-up of the front porch just after the door was installed.

 

 

Installing Sill Pans

When most of the siding and overhangs were complete, Wojtek and Mark started installing the metal sill pans for all the windows and doors.

Greg, the owner of Siding and Windows Group, suggested we use Lakefront Supply for all the flashings, which turned out well as they were able to create exactly what we needed.

 

sill pan inside edge b4 return trim 2nd view

Metal sill pan slid under bottom aluminum edge of the window.

 

In the photo below you can see the horizontal layer of 1×4 strapping, which becomes a nailing surface for the 1×6 cedar board that will be used as a return back to the window frame.

 

inside corner sill pan b4 return trim

A second view of the same area.

 

 

mbr wdw w: sill pan b4 final pce trim

From inside looking down at the sill pan.

 

 

side view sill pan edge beyond sd

Outside edge of the sill pan.

 

 

south wdw after sd b4 trim

Window waiting for the last few pieces of trim.

 

We were going for a “frameless” look for the windows so that once all the trim was installed very little of the window frame is left exposed.

 

k wdw trimmed out fmly rm wdw bg

Kitchen window with all the trim pieces installed.

 

 

innie wdw face - frameless look

Once the screens were installed, there was almost no room to spare. We really like this “frameless” look combined with the “innie” window position — it creates some really nice shadows at various times during the day.

 

 

frt dr sill pan

Front door sill pan installed.

 

 

kitch dr sill pan

Kitchen door with the sill pan installed.

 

 

Wojtek installing first sill pan

Wojtek pulling off the protective plastic on the sill pan.

 

 

mark and wojtek install 1st pce garage roof flashing

Mark and Wojtek installing flashing on the top of our garage roof.

 

 

2nd shed rf flash

Wojtek screwing down the flashing.

 

All of the elements finally in place: master bedroom window with natural accent, charred cedar used to return the siding back to the frame of the window, with the metal sill pan underneath.

 

mbr wdw frame sill pan

 

 

Gutters and Downspouts

For the gutters and downspouts we went with Nordic Steel. They’re expensive, but they’ve lived up to the marketing claims: with a larger half-round gutter and wide diameter downspout, we’ve never had to clean out our gutters (so far, anyway). They also look really nice, and they fit in well with the Urban Rustic feel we’re going for.

 

nordic ne

 

 

nordic n

 

 

Decorative Details

It was exciting to finally get the small, decorative pieces for the exterior out of storage. For example, I purchased our metal house numbers and our front doorbell on Etsy, at Modish Metal Art. As it turned out, Etsy proved to be an invaluable resource, both for decorating the exterior and the interior of our house (more on this later).

Our exterior lights were found on Amazon: Hyperikon

 

house numbers out of storage

‘Wobbly’ house numbers.

 

 

doorbell

Gecko doorbell finally installed.

 

 

house # and drbell

Front door details complete: trim, sill pan, doorbell, house numbers, and exterior light.

 

I found these white porcelain numbers on Etsy — made in Japan, so they seemed perfect for our shou sugi ban. Unfortunately, this Etsy shop is no longer in business.

With some Spax screws, and the charred cedar as a background, the white numbers really pop.

 

708 white porcelain w: spax

 

 

Stucco for Inside Window Wells

For inside our basement window wells we initially thought we would just carry the wood siding all the way down. Once the retaining walls were in, and we saw how complicated the cuts would need to be around the stone — not to mention all the work required in hammer drilling concrete bolts into the foundation to establish strapping for the charred cedar — we realized wood wasn’t really a viable option.

After contacting Rockwool directly, they told me stucco over the exposed Comfortboard 80 would work fine, although it wasn’t presented as an option in the paperwork they had originally given to me. This was a great relief, and Wojtek had a friend who installed stucco, so it ended up working out really well.

The window bucks around the basement windows took a real beating during the prolonged construction process, so I touched up the sills with Prosoco’s Fast Flash to make sure they were watertight.

 

Tomasz

Tomasz installing the lathe with long concrete screws in preparation for our traditional 3-coat stucco.

 

Tomasz would eventually take the stucco up to the Cor-A-Vent insect screen, and then Wojtek and Mark would lower the charred cedar below this point by several inches, completely hiding the seam between the two materials.

 

stucco 2nd coat k dr

Charred siding, corner of the window well, and the stucco (only 2 coats at this point) meet.

 

For the railings around the window wells we wanted to use a hog wire panel (in keeping with the Urban Rustic theme). Initially, I thought I would use Wild Hog Railing combined with wooden posts, but decided an all-metal railing system would be better, mainly for durability reasons.

 

wdw wll 3

Gutters going up just after the railings around the window wells were installed.

 

 

wdw wll 2

View of the railing from a basement window.

 

 

How Durable is the Charred Cedar?

Initially at least, our luck hasn’t been great with the charred cedar.

For instance, during our first summer with the siding last year we noticed that we had some carpenter bees buzzing around the house. At first, I didn’t think much of it since the charred cedar is supposed to be insect-resistant. But then I noticed a bee digging a hole above one of the windows and realized something needed to be done.

After reading up on their lifecycle, I used a spray inside the holes that were present (about 10 total after I went looking), following up a couple of days later with a few puffs of diatomaceous earth. After waiting two more days, I then stuffed each hole with some steel wool before covering each entry point with some black sealant. Once patched, these areas are virtually invisible.

This spring and summer we kept a careful eye on these specific areas, along with the house more generally, but no bees emerged, so it looks like the problem has been resolved. Nevertheless, it’s something we’ll need to look for every May and early June.

Looking back, the bees nested in the exposed sub-fascia on two sides of the house before the siding and overhangs were installed. At the time, not understanding their lifecycle, I just plugged these holes with some caulk, thinking that would suffice. Unfortunately, it wasn’t, and their offspring emerged the following spring/early summer digging through the charred cedar fascia. If I had properly addressed these spots with a spray and then diatomaceous earth combination initially, there’s a good chance I could’ve avoided this problem altogether.

Since their offspring return to the area where they initially emerged to create their own nest sites (or even to reuse the existing one), it’s extremely important to address the problem as soon as possible, otherwise one or two small nests can quickly expand to dozens of bees swarming around the eaves of a home in early summer. And, even more sinister, it’s these nesting tunnels that attract the attention of woodpeckers who go looking for them, hammering the wood to get to the larvae below the surface, and scarring, if not ruining, the wood in the process.

In fact, this past January there was a morning where I heard a sound like a machine breaking down, almost like a chain breaking off its wheel. When the sound moved across to the other side of the house I suddenly realized it was a woodpecker. Luckily, he was sitting on a downspout right outside our window, so just opening the window was enough to startle him and make him fly off. When I went outside to look for damage I only saw a couple of small spots, as if he were just testing the wood for insects and found nothing. Thankfully, he hasn’t been back since. We’re hoping it stays that way.

Also, after the siding was up for about a year, especially after its first summer, it started to show some wear. Since the north side has held up the best, I can only assume it’s exposure to the sun that caused most of the wear to occur on the other three sides of the house and garage (although I’m sure rain played its part, too).

 

north light orange

Although showing some wear, these boards have retained their orange and yellow undertones on the north side of the garage.

 

In general, areas with a heavier layer of char have held up better, but sometimes even in these areas we’ve seen some missing char develop.

Here are some pictures showing the extent of the fading:

 

west b4 tar

West facade facing the backyard.

 

 

kitchdr19b4

South side.

 

 

s east end b4 tar

Another view of the south side.

 

 

south garage b4 tar

South side of the garage.

 

 

garage b4 tar

East-facing side of the garage.

 

The wear occurred slowly, so it kind of crept up on us. At some point, both my wife and I started to remark on the changes. And some areas are far worse than others:

 

close up missing char

Arguably the worst area of fading on the charred cedar.

 

Although the charred wood wasn’t in any immediate danger, and I enjoyed this ‘aged’ look, my wife said she preferred the original, more opaque, black look of the siding. And to be honest, since many of these exposed areas were turning gray, I worried about how well any product we might try in the future would soak in and adhere, so I decided to address it this year rather than wait any longer.

Thankfully, I was aware of Kent’s blog, Blue Heron Ecohaus, having seen it featured on GBA. He goes into detail regarding his decision to use Auson black pine tar instead of going with a shou sugi ban finish.

Our siding was installed in the Fall of 2017, and last summer I experimented with the recommended 50/50 mix of Auson and linseed oil, using it to touch-up a handful of boards, including all the cut edges that Wojtek and Mark had meticulously burned. Without any tung oil, these exposed edges had faded badly, almost to the same consistent gray on every piece. Again, this may be because they didn’t receive an especially heavy level of char when burned, but I can’t know for sure.

The guy in this video had a lot more fun applying the product than I did:

 

 

Even though the charred wood is said to easily last for decades, we also knew that it should get oiled about every 15 years to improve its durability, so having to do touch-ups wasn’t as heartbreaking as it might otherwise have been. I guess our 15 year mark came early. It also helped that it wasn’t necessary to do any overhangs (fascia or soffit) — those areas seem to be holding up really well, including the areas of ‘tiger striping’.

 

tiger striping on south overhangs

Area of fascia and soffit on the south side of the house with ‘tiger striping’.

 

Here are some pictures of the ‘refreshed’ charred cedar:

 

w sw as pine tar being applied

Starting on the west side with the black pine tar.

 

 

pine tar fmly rm wdw - bleached out to rgt

Making progress on the south side.

 

Our little black box with revitalized skin:

 

w after tar evening

West facade complete.

 

 

south west fmly rm after tar

Southwest corner after pine tar.

 

 

south tower after tar

Another view of this southwest corner.

 

 

porch after tar

Front entry and the south side of the garage after pine tar.

 

 

front after tar

Another view of the east facade after the pine tar.

 

 

708 after tar

Closer view of the charred cedar after the pine tar.

 

 

close up char texture after tar

Close-up: the black pine tar had no negative impact on the heavily charred areas.

 

 

after tar still variation color texture

On areas with the lightest char the black pine tar soaked in but didn’t completely make the surface an opaque black. My guess is, a second coat probably would’ve made it opaque.

 

If I was going to do charred cedar, or shou sugi ban, again — at this point, that’s a big ‘if’ — I would definitely insist on doing a uniformly heavy char finish (or ‘gator’ finish), and I would use the black pine tar to try and seal-in the char as much as possible. As beautiful as the lighter charred areas were when they first went up, they just couldn’t stand up to the weather — at least that was our experience anyway.

 

black box in snow1

Our little black box in snow. Another reason we chose to go with black siding.

 

Nevertheless, the pieces of shou sugi ban that we’ve incorporated into our interior have held up nicely with just a tung oil finish, showing no signs of deteriorating, presumably because they’ve avoided any direct sun or rain (more on these areas in a future post).

 

black box in snow2

We like the solidity that the black siding gives to the house when there’s snow on the ground.

 

Another option would be to use a metal siding version of charred wood:

Bridgersteel

I’m guessing it’s expensive, but it could be a viable alternative, especially for those unwilling or unable to do maintenance chores for the charred wood siding over time but who are, nevertheless, in love with the look of real shou sugi ban.

Still another product worth considering:

Thermory USA

This product is newer, so its long-term durability is still debatable until time proves definitively one way or the other, although the idea does seem promising.

 

black box snowing

House as the snow falls. We enjoy the sharp contrast between the snow and the black siding.

 

On a bad day — like when I had to hunt down carpenter bees, or touch-up the char with the pine tar — I know I should’ve gone with a more care-free siding material like metal. And yet, on most days, when the overhangs and siding are perfectly fine, it’s hard to argue against the singular look that charred cedar can produce.

 

sd at kitch dr at night

Kitchen door and stoop with the light on.

 

So even with all the time, effort, money, and frustration that’s gone into making the charred cedar work, I still love the way it looks every time I pull into the driveway, or notice it while working in the yard. It’s just important to understand that as with anything worth doing, or any labor of love — like building our house it could be said — it comes at a price.

 

frt dr w: light

The house at magic hour.

 

 

Building in the Suburbs

0

Once you’ve decided to pursue a new construction build, regardless of where you buy land, it’s likely to raise some issues regarding unintended consequences (whether or not the homeowner, builder, or developer wishes to acknowledge this is another matter).

In a rural setting, for example, you’re likely to be removing fertile farmland, or cutting down someone’s idea of a pastoral idyll or enchanted forest.

 

Look out the plane window on a flight from New Orleans to Chicago, or Denver to Cincinnati. Everything you see is already in agricultural production. This huge expanse of naturally fertile ground literally feeds the world. The suburbs growing around any city show that we are losing agricultural land even as the human population continues to grow. 
— David R. Montgomery, Dirt: The Erosion of Civilizations

 

With nature setting limits on land viable for agriculture, future generations may be horrified by our willingness to build over these acres of fertile soil with so little thought for the potential long-term consequences.

Many of Wendell Berry’s essays lament this lack of respect for the land, whether it’s cultivated field or wild forest:

 

 

In a larger city, on the other hand, you might be tearing down something people find historically significant, or maybe just significant to the character of a specific block or neighborhood.

 

 

Building in the suburbs, even when it’s done on a previously empty infill lot in a well-established subdivision like ours, still comes with its own set of unique implications.

 

 

For example, at one extreme there is a great fondness for suburbia, even a kind of utopian idealism.

 

 

It’s not uncommon at this point in their history for this idealism to be wrapped up in fond childhood memories, eliciting a vibrant strain of nostalgia (some might suggest of an unhealthy, cloying variety) for suburban life.

 

 

All too often suburbia is just the unquestioned background for mainstream life, for example, in the string of popular 1980’s films by John Hughes:

 

 

Although it’s hard not to notice in this case, at least, that the main characters escape from the suburbs to the big city when they’re in the mood for some excitement, adventure, and cultural enrichment.

At the other end of the spectrum there is utter contempt for suburbia and its perceived values, readily apparent in any number of movies, novels, or the DIY Punk movement of the late 1970s and early 1980s (and still going strong).

 

 

 

 

 

From this perspective, the suburbs are where the soul goes to die (particularly for the adults who have made their peace with authority, or so the argument would run). In other words, there may be safety in the suburbs, but it comes with a price. In fact, for many of its critics, suburbia represents mostly denial rather than any kind of meaningful affirmation.

 

The Revolutionary Hill Estates had not been designed to accommodate a tragedy. Even at night, as if on purpose, the development held no looming shadows and no gaunt silhouettes. It was invincibly cheerful… A man running down these streets in desperate grief was indecently out of place.
— Richard Yates, Revolutionary Road

 

For many young people the suburbs are what you end up trying to escape. The suburbs are missing something; the only thing on offer is the bland, the same, the quiet, and the sleepy. At best the suburbs in this case can be thought of as an uncomfortable launching pad, or a spur motivating escape plans. Your dreams and aspirations lie elsewhere, and the sooner you can move on the better.

 

 

As far apart as these two extremes might appear, feelings about the suburbs can even fall somewhere in-between (especially for those of us who were raised in suburbia), as a kind of bittersweet mix of love and contempt — e.g. ‘I didn’t choose to grow up in the suburbs, but that’s where many of my most vivid memories reside‘.

 

 

Early on in his 33 1/3 study of Arcade Fire’s album The Suburbs, Eric Eidelstein makes a similar point, “There’s nothing I wanted more than to leave my suburban upbringing. Now that I have, a part of me wishes I could dip my toes back into the bubble… Suburbia is innocence and ignorance… freedom and constraint… lightness and darkness.” The key, and devastating, word in that passage being ‘bubble’.

 

 

This Smashing Pumpkins song and video captures a similar feeling:

 

 

Two wildly different episodes from the original Twilight Zone TV-series reflect these violently divergent attitudes towards suburbia. The first is a love letter to a golden childhood, forever lost to the passing of time and the realities of adulthood. The second represents a kind of hell of conformity, reeking of paranoia and dread. Civility is revealed to be only a thin veneer that easily falls away under the slightest pressure, exposing ugly truths buried just below the surface of everyday life. For anyone who grew up in the suburbs these storylines are relatable, no doubt to varying degrees.

 

The Monsters are Due on Maple Street:

 

 

Walking Distance:

 

In my own case, living in the suburbs entailed countless hours of playing various sports with friends in the neighborhood, and seemingly endless bicycle rides through contiguous subdivisions waiting for the day we could drive cars (or ride motorcycles) and actually go somewhere, alongside memories of the ‘perfect’ neighbors who, later it was revealed, had separately engaged in fraud and embezzlement at work, seemingly out of unadulterated greed since neither of them ‘needed’ the money.

Perhaps no other work better captures this strange mixture of paean and warning about what lays just below the surface in the suburbs than David Lynch’s Blue Velvet:

 

 

For decades Americans have abandoned small farming communities and larger metropolitan areas to flee to the suburbs, mainly in the hopes of rounding off the sharp edges of life as its experienced on a farm or in a large city.

 

The suburban ideal offered the promise of… an environment that would combine the best of both city and rural life.
—Kenneth T. Jackson, Crabgrass Frontier

 

What was clearly being left behind were the extremes. For example, brutal, albeit beautiful at times, farm life.

 

Days of Heaven:

 

 

Dawn to Dusk:

 

 

And the seemingly cartoonish, but no less lethal, aggression often associated with the big city.

 

The Warriors:

 

 

Mean Streets (NSFW):

 

As Jackson notes in Crabgrass Frontier, the suburbs “offered the exciting prospect that disorder, prostitution, and mayhem could be kept at a distance, far away in the festering metropolis.” Simultaneously, although nurturing a carefully manicured lawn (a practice that dates back to at least the 19th century), the average suburban plot freed its owner from the back-breaking labor associated with farming, along with its attendant risks like crop failures, the vagaries of maintaining livestock, or the whims of the marketplace.

In staking out a middle ground, suburbia tries to avoid the excessive “liveliness” of the big city, while also studiously avoiding the brutal cycles of life and death that anchor and allow a working farm to thrive. Nevertheless, suburbia remains tethered to city and farm; almost entirely dependent on the city’s industry and markets (both for employment and consumption), while the farms supply virtually all of its food supply. In a way, then, suburbia represents both a denial of life and death.

 

 

But the extremes are no less real, and they remain virtually impossible to avoid altogether. Denial just makes the situation worse.

In the case of Blue Velvet, for instance, where the villain, Frank Booth, is presented as evil incarnate stalking around the suburbs at night, things may be even worse than they first appear. As David Foster Wallace points out, “…the real horror in the movie surrounds discoveries that Jeffrey makes about himself… not of Dark Frank but of his own dark affinities with Frank is the engine of the movie’s anxiety.” Lynch, according to Wallace, drives this point home in the car scene when Frank turns back to Jeffrey and says “‘You’re like me’. This moment is shot from Jeffrey’s visual perspective, so that when Frank turns around in the seat he speaks both to Jeffrey and to us [emphasis added].”

If the suburbs at their worst represent an attempt to push away harsh realities, then it can’t go on forever, and, in the meantime, the attempt itself can produce some pretty nasty consequences.

This kind of angst in the suburbs almost seems inbred at this point; not only has it survived but it’s thrived for decades, seen in the boredom and unfocused rage of Rebel Without a Cause right up to the grunge and riot grrrl movements of the early 90’s and beyond.

 

The chicken run from Rebel Without a Cause:

 

 

Bikini Kill’s Rebel Girl:

 

 

Meanwhile, the kind of human wreckage detailed in Madeline Levine’s The Price of Privilege is clearly deeply rooted in suburban realities and conventional notions of what constitutes success and ‘the good life.

 

 

As a result, reasons for disliking the suburbs are legion, especially evident once you start looking for opinions. Moving beyond the general stereotypes of conformity and isolation, there are also stark realities regarding how suburbia came to be and how it’s been maintained, which is especially devastating when you realize nothing was a foregone conclusion, and that choices have been made at every stage of their progression.

 

 

In confronting “The prevailing myth… that the postwar suburbs blossomed because of the preference of consumers who made free choices in an open environment,” Jackson points out that “Because of public policies favoring the suburbs, only one possibility was economically feasible.” Once government programs like “FHA and VA mortgage insurance, the highway system, the financing of sewers…”, not to mention “…the unusual American practice of allowing taxpayers to deduct mortgage interest and property taxes” are taken into account, the suburbs seem not only inevitable but carefully planned for — even if many of their long-term consequences were not.

 

 

 

 

Understanding this historical context makes a work like Family Properties even more of a heartbreaking read. Whether it’s the well-documented history of red lining, blockbusting, ‘contract selling’, restrictive covenants, or even more publicly overt acts of racism, the suburbs certainly have an ugly past.

 

 

 

 

As Beryl Satter makes clear, being forced to ‘buy on contract’ meant African Americans lost “their savings during the very years when whites of similar class background were getting an immense economic boost through FHA-backed mortgages that enabled them to purchase new homes for little money down… While contract sellers became millionaires, their harsh terms and inflated prices destroyed whole communities.”

 

 

In effect, one group of Americans enjoyed the benefits of homeownership, including selling years later for a substantial profit (in many cases passing this money on to a second generation as part of an inheritance), while another group of Americans lost their entire life savings.

 

 

And that past, unfortunately, never seems to be very far away.

It is this kind of historical context that helps explain, at least in part, the resonance of a movie like Get Out:

 

 

It’s undeniable, then, that the suburbs, as an idea and a physical reality, are overdue for some kind of transformation — in terms of socioeconomic issues, resource demands and energy use, architectural aesthetics, transportation, water management, their relationship to nature (both wild and cultivated), etc. The list of issues that could be addressed is truly daunting.

 

Here is one attempt:

 

The suburbs are also dragging around other cultural baggage besides just single-family homes and endless miles of congested highways. For instance, it’s almost impossible to bring up suburbia without acknowledging the rise and fall of the shopping mall, at least the dominant style of mall popular since the second half of the 20th century:

 

 

 

 

As others have clearly documented (perhaps most vividly by Dead Malls), many of these shopping malls look to be on their way out, as both cultural touchstones and architectural objects:

 

 

 

 

In their place, one proposed solution is Lifestyle Centers. It’s not at all clear that anyone has a definitive, bullet-proof, strategy for overhauling these structures, and ‘lifestyle centers’ appear to be little more than a variation on the original shopping mall form. In fact, it appears cities and developers are just guessing at what might work.

One solution for the suburbs in general might be pockets of self-contained neighborhoods, mimicking the dynamic energy of urban living Jane Jacobs wrote about in Death and Life of Great American Cities, which is reminiscent of many traditional European city, and even smaller village, neighborhoods:

 

 

 

 

Whether or not the housing density necessary to achieve this is possible (e.g. building up to avoid excessive sprawl, with each individual residential unit smaller than what we’ve grown to think of as normal), it would also require a high-level of city planning and cooperation amongst all the stakeholders to incorporate all the services and day-to-day needs of the population, all while managing to also maintain and hold onto significant green spaces. A tall order indeed.

Even so, there have been pioneers and experiments trying to explore various possibilities.

For example, Village Homes in Davis, California, developed in the 1970’s, pursued a more holistic approach to residential construction.

 

 

His comments at the end of the video regarding their battle with the status quo is particularly telling. You can read more about the project here: Village Homes

More recently, the founding partners of GO Logic worked to create Belfast Cohousing Ecovillage.

 

 

The hope is that living arrangements and social networks like these will improve the participants’ quality of life.

 

 

These kinds of cooperative living and working arrangements are growing in popularity, with a major historical antecedent being Mondragon in Spain.

 

 

As Americans grow increasingly disenchanted working for large, unaccountable corporate entities, these kinds of organizations have the potential for significant expansion, even in places like Cincinnati, which is hardly thought of as a progressive redoubt.

South Mountain Company, based on Martha’s Vineyard, would be one successful example from the construction and design fields (Marc Rosenbaum, who’s had a significant presence on GBA, is one of their employees/co-owners). John Abrams, the founder, wrote Companies We Keep, a compelling and detailed read on the evolution of the business.

For anyone who’s interested, the US Federation of Worker Cooperatives is an excellent resource for those wanting to pursue this idea further.

There are still other projects, for instance, community gardens or larger scale suburban permacultureguerrilla gardening, or even Brad Lancaster’s street project, which try to improve the quality of life at the neighborhood level of a subdivision or even a single block (note that it’s no accident that all of these smaller projects improve our connection to nature).

 

 

Even something as small as planting a hell-strip on your own with colorful perennials is a start — something we see more and more of in the residential neighborhoods just outside of downtown Chicago, and even out here in the suburbs. Considering their tiny area of square footage, these mini-gardens have an incredibly powerful visual impact.

 

 

These projects represent mostly small-scale, but no less valid, attempts to make suburban life better and more meaningful for residents and visitors alike. In addition, these projects point to our intrinsic need for maintaining a real connection with nature, now often referred to with the buzzword notion of Biophilic Design, itself an outgrowth of E.O. Wilson’s biophilia hypothesis.

 

 

 

 

Almost anything would be preferable to the typical mix of poorly built cookie-cutter homes surrounded by congested roadways and the endless, and largely undifferentiated, strip mall hell that we currently endure:

 

 

As with strip malls, if houses prove to be equally unloved, even despised, it’s easy as a culture to let them rot or just bulldoze them and start over. If people are going to put in time, money, and effort to save something, it had better be well-loved, i.e. fulfill some pretty fundamental needs.

The existing and aging housing stock ringing every large city in America isn’t going anywhere. Whether rehabbed in a sporadic and piecemeal way, with varying amounts of success (both in terms of build quality and energy consumption), or the issue is addressed head-on by local and federal programs, something will need to be done.

It’s possible to imagine a large-scale retrofit program, with Passive House, or at least Pretty Good House, goals set as the benchmark. After tearing down the most dilapidated units, making way for the new, there would still be ample opportunity to rehab existing structures in a thoughtful way that could be a real boom for employment (maybe even allowing us to finally establish a much needed national apprenticeship system) as it also works to draw down on our housing stock’s demand for energy. It would also be offering people work that has real, tangible benefits to our society and the world as a whole, something that’s missing from most construction work at the moment.

If one’s intent, however, is just to dismantle the logic of the suburbs, there’s certainly no shortage of intellectual rocks lying around if you want to pick some up and start throwing them through the shiny, glass-filled facade of suburbia.

And frankly, it’s kind of fun to do. For example, how about suburbanites as brain-dead zombies out to mindlessly consume:

 

 

Whether it’s their costly infrastructure and massive energy consumption, their car dependency, their love affair with lawns, their lack of density, their total isolation from farming (or nature more generally; even where it does pop up it tends to look and feel like an afterthought), or the isolation from what the city has to offer, the suburbs certainly have their issues, many of them profound if not existential.

 

 

And even though I think all of these issues are certainly well worth thinking about, especially if you have the ability to choose between rural, urban, and suburban locations for work, the fact remains that for many people the suburbs are, in fact, still the best option for housing.

So the question remains: How do we make the suburbs better? 

In our case, my wife works less than ten minutes from home. Unfortunately, a car is still the only real option for transportation (rather unbelievably) — e.g. busy roadways and a lack of continuous pedestrian or cycling pathways make what is an otherwise short commute somewhat perilous to navigate. Nonetheless, moving into Chicago proper, or out to a rural setting, didn’t make much sense to us, mainly because of the added drive time.

 

 

After deciding that we would try and build something new here in Palatine, a suburb of Chicago, we concluded that we should do our best to make something that would be loved and cared for long after we’ve moved on.

For the house itself this meant making choices regarding the structure, while for the yard, at least in our case, it meant pursuing permaculture principles rather than the more typical suburban lawn with some foundation plantings (more on the specific details in future posts).

 

 

Obviously, one house here or there that bucks current trends isn’t going to change much about an entire culture. A house like ours is mostly just to demonstrate what’s possible. Nevertheless, there’s real opportunity for large scale change, whether in our bigger cities, rural areas, or even the suburbs.

 

 

In the cities it could mean carving out space for many more community gardens, insisting on Passive House (or at least Pretty Good House) structures, limiting the use of cars while overhauling public transportation, all while giving priority to pedestrians.

Also, coming up with various strategies to avoid gentrification so that once a neighborhood is fully revitalized the original, long-term residents aren’t forced out by a higher cost of living (mainly through increased rents and property taxes).

As Aaron Shkuda documents in his book The Lofts of SoHo (Gentrification, Art, and Industry in New York, 1950-1980), a large influx of artists and the culturally much-maligned ‘hipsters’ is typically the initial spark a struggling neighborhood needs to begin a turnaround.

 

“The form of development that artists pioneered in SoHo provided a way for cities to confront the urban crisis without the financial and social costs of slum clearance… the mode of development that grew in SoHo was the antithesis of urban renewal. It was unplanned, and it stymied the attempts of experts or politicians to control it… SoHo provided a distinctly urban alternative to the structures built through urban renewal. These projects mainly attempted to provide urban residents with amenities found in the suburbs, such as easy auto access, security, and a verdant, non-urban feel. SoHo was gritty, urban, dense, and all the more popular for it… the history of SoHo demonstrates that it is perhaps the neighborhoods that artists create, rather than the artists themselves, that help draw and retain [educated professionals].” 

—Aaron Shkuda, The Lofts of SoHo

 

In fact, as Shkuda points out, this formula has repeatedly proven so successful that “it is difficult to find a contemporary American city without residential lofts.” In effect, large, empty or abandoned, spaces converted into residential lofts is a stamp of approval, announcing that a specific neighborhood is now desirable or even the height of ‘cool’.

The trick is making sure the transformation — making an area worth going to because of art galleries, artisan shops, unique restaurants, bars and coffee shops, and overall cultural vibe — doesn’t overshoot the mark, moving past rebirth to a stage where only the wealthy can afford to stick around and participate.

Moreover, the fact that SoHo emerged from the ashes of deindustrialization not through centralized planning but rather the hard work and vision of individuals is worth celebrating. More importantly, it’s worth remembering as others take on the largely thankless task of urban renewal in their own neighborhoods (perhaps much the same applies to rural and suburban areas: if you want something different, make it different).

 

 

In rural areas we could encourage a transition from factory farms to a more holistic agroforestry model (hopefully inspiring some young people to come back from the city and suburbs to pursue a viable and rewarding career in farming). This model could include ample opportunities for agro-tourism, both to benefit locals and those who will visit from the suburbs and cities.

In the suburbs, in addition to renovating aging housing stock (again, to Passive House or Pretty Good House levels of performance), the development of walking and cycling trails, not unlike the Atlanta Beltline, for example, which would include walkable areas that thoughtfully combine residential and commercial zones, all while remaining focused on our need for nature via biophilic design strategies, could be the transformation that allows the suburbs to move beyond well-earned, but stale, cliches.

 

 

In addition, the suburbs require not just a new vision regarding mixed use, but also mixed income, providing housing to all, whether poor, old, young, or its more traditional economically secure nuclear families.

Unfortunately, if the glacial rate of change from conventional to ‘green’ building techniques in the construction industry is any indicator, then the suburbs may just carry on doing their thing, loved by some as they alienate and agitate others, all while remaining quietly, but defiantly, resistant to change.

Siding Part 1: Continuous Insulation with a Rainscreen

10

Continuous Insulation vs. Double-Stud Wall

Although builders can make either approach to high-performance walls work, we decided continuous insulation (or CI for short) made the most sense to us. And while continuous insulation has its own challenges, especially in terms of air and water sealing details around windows and doors, intuitively we felt insulation on the outside of our sheathing would give us our best chance at long-term durability for the structure.

In spite of the fact that these kind of wall assemblies are climate specific, for anyone interested in the performance of various wall assembly approaches this BSC paper is an excellent place to start:

 

High R-Walls

 

Or you can check out Hammer and Hand’s evolving wall assembly strategies here:

 

Passive House Lessons

 

And here’s a mock-up wall assembly by Hammer and Hand showing many of the details we incorporated into our own house:

 

 

While many believe a double stud wall simplifies much of the framing, we decided that a continuous insulation approach, which in theory should better manage seasonal moisture changes inside the walls while it also eliminates thermal bridges, was worth the extra effort.

 

 

2 Layers of Rockwool over Zip Sheathing

Based on the drawings from our original builder, Evolutionary Home Builders, who was going to use 3.75″ inches of rigid foam, and the recommendations of both PHIUS and Green Building Advisor for our climate zone 5 location (leaning heavily towards PH performance), we decided to go with 4″ of Rockwool Comfortboard 80 on top of our Zip Sheathing.

For more information regarding how we came up with the specifics of our wall assembly, go here:

Wall Assembly

 

 

Finding Subcontractors for a Passive House

In the Chicagoland area it’s still a struggle to find builders or subcontractors who are knowledgable about, or even interested in, “green building”. In fact, despite our well-documented experience with Evolutionary Home Builders, clients continue to hire Brandon Weiss (Dvele and Sonnen) and Eric Barton (apparently now on his own as Biltmore Homes, or Biltmore ICF) presumably because the options here in Chicago remain so limited. We assume this is the case because we still get the occasional email from current or former clients who have also had a negative experience working with Brandon or Eric. In addition, even though PHIUS has dozens of certified builders and consultants listed for Illinois and the larger Midwest region, it’s unclear just how many of them have worked directly on an actual Passive House project.

Until there’s more demand from consumers, or the building codes change significantly, it’s difficult to imagine the situation improving much in the near future. This is unfortunate since particularly here in the Chicago area, or the Midwest more broadly, homes could really benefit from the Passive House model, or something close to it, e.g. The Pretty Good House concept, because of our weather extremes (dry, cold winters and hot, humid summers). The combination of meticulous air sealing, high R-values, and continuous ventilation associated with any high-performance build is hard to beat in terms of day-to-day occupant comfort, not to mention the significant reduction in both overall energy demand and the cost of utilities.

In our own case, when I think of all the individual trades we had to hire, securing a siding contractor was far and away the most difficult. Our HVAC contractor for the ductless mini-splits was already somewhat familiar with “green” building and PH, so working with me on air sealing details and dealing with a thick wall assembly didn’t worry him. Also, if I had it to do over, I don’t think I’d bring up all the PH details with a plumbing or electrical contractor when getting bids since the air sealing details are pretty straightforward and can easily be planned for and executed on-site after they begin their work (assuming someone else, most likely a rough carpenter, GC, or homeowner is tasked with all the air sealing chores). And if the concrete sub is unfamiliar with insulation under a basement slab, or over the exterior walls of the foundation, then it’s easy enough for framers, or even homeowners if necessary, to do this work, along with installing a vapor barrier like Stego Wrap before the basement slab gets poured.

For siding, however, because of the level of detail involved before the siding itself could be installed, it was a real challenge to even get quotes. As things turned out, we had nearly twenty contractors (a mix of dedicated siding contractors and carpenters) visit the job site before we received an actual estimate. Many of those who visited the job site expressed genuine interest, most going so far as to acknowledge that this kind of wall assembly made sense and would probably be mandated by the residential code at some point in the future, but almost without exception they would disappear after leaving the job site — no bid forthcoming, and no response to my follow-up phone calls or emails.

Clearly they were terrified, not without justification, to tackle something so new, viewing our project through a lens of risk rather than as an opportunity to learn something new. From their point of view, why not stick with the type of jobs they’ve successfully completed hundreds of times in the past? It also didn’t help that I was a first time homeowner/GC, rather than a GC with a long track record of previously built homes in the area.

In addition, not only is continuous insulation over sheathing a novel concept in the Chicago area, especially in residential builds, even utilizing a ventilated rainscreen gap behind siding is almost unheard of — typically Hardieplank lap siding is installed directly over Tyvek or similar housewrap (this can be observed directly on hundreds of job sites across the city and suburbs). And this isn’t entirely the fault of contractors. For instance, how many homeowners when presented with the idea of continuous insulation, or a rain screen gap, balk at the extra costs associated with these techniques without carefully considering the potential energy savings or increased durability for the structure?

While there are any number of certified LEED projects in our area, and even some Passive House projects (both residential and commercial) in Chicago and the surrounding suburbs, for the most part consumers are still largely unaware of Passive House or other “green” building standards like Living Building Challenge. Clearly “green” building, let alone Passive House, has its work cut out for it here in the Midwest if it ever hopes to have a meaningful impact on the construction industry.

 

 

Installing Rockwool over the Zip Sheathing

Mike Conners, from Kenwood Passivhaus, was nice enough to recommend Siding and Window Group, which definitely got us out of a jam. Thankfully, Greg, the owner, was up for the challenge and was nice enough to let us work with two of his best guys, Wojtek and Mark.

Initially Wojtek and Mark dropped off some of their equipment at the site the day before they were to start work on the house. This gave me a chance to go through many of the details with them directly for the first time. Although a little apprehensive, they were also curious, asking a lot of questions as they tried to picture how all the elements of the assembly would come together. In addition to the construction drawings, the series of videos from Hammer and Hand regarding their Madrona Passive House project were incredibly helpful (this project in particular was a big Building Science inspiration for us).

 

 

 

 

Also, this video from Pro Trade Craft helped to answer some of the “How do you…?” questions that came up during the design and build phases:

 

 

As sophisticated and intricate as some architectural drawings may be, in my experience nothing beats a good job site demonstration video that shows how some newfangled product or process should be properly installed or executed.

On the first day, while Wojtek and Mark installed the Z-flashing between the Zip sheathing and the foundation, along with head flashings above the windows and doors, I started putting up the first pieces of Rockwool over the Zip sheathing.

 

installing head flashing above wdw

We found it easier to embed the metal flashings in a bead of Prosoco’s Fast Flash. Once in position, an additional bead of Fast Flash went over the face of the flashing, ensuring a water tight connection between the metal and the Zip sheathing.

 

For the first layer of Rockwool we installed the pieces horizontally between studs as much as we could, knowing that the second layer of Rockwool would be oriented vertically. This alternating pattern helps to ensure seams are overlapped between layers so there aren’t any areas where the seams line up, an outcome that could undermine the thermal performance of the 2 layers of Rockwool.

 

z flashing nw corner

Z-flashing carried down over the exposed face of the Rockwool on the outside of the foundation walls — once installed, the gravel is pushed back so it covers the area where the flashing terminates on the face of the Rockwool. The other 3 sides of the house had much less exposure in this foundation-gravel border connection.

 

We didn’t worry too much about the orange plastic cap nails missing studs since they were sized to mostly end up in the Zip sheathing. In the end only a couple of them made it completely through the Zip without hitting a stud.

 

1st pcs rockwool going up n side

Putting up the first pieces of Rockwool on the north side.

 

Every so often Wojtek would come around the corner and watch what I was doing before asking questions about specific elements in the wall assembly.

 

orange cap nails for 1st layer rockwool

Plastic cap nails we used to attach the first layer of Rockwool. I purchased these from a local roofing supply house.

 

By the time I had about a quarter of the north side covered, Wojtek and Mark were ready to take over from me.

 

1st layer rockwool n side

First layer of Rockwool mostly complete on the north side. Before installing the bottom row of Rockwool we used shims to create a slight gap between the Rockwool and the metal Z-flashing on the foundation insulation to allow any water that ever reached the green Zip sheathing a clear pathway out.

 

In a pattern that would repeat itself with each layer of the remaining wall assembly, Wojtek and Mark would carefully think through the details as they progressed slowly at first, asking questions as issues arose, before getting the feel for what they were doing and eventually picking up speed as they progressed around each side of the house.

 

20171002_081038

Outside corner showing the Z-flashing covering the face of the Rockwool on the foundation with the first layer of Rockwool covering the Zip sheathing above.

 

Working through the many details with Wojtek and Mark — the majority of which occur at junctions like windows and doors, the top and bottom of the walls, along with mainly outside corners — was both collaborative and deeply gratifying. They demonstrated not only curiosity and an ability to problem solve on the fly, they also clearly wanted to do things right, both for me as a customer and for the house as a completed structure (it felt like both aesthetically and in building science terms).

 

1st layer rockwool at wdw buck

First layer of Rockwool meeting up with a plywood window buck. We tried to keep connections like these as tight as possible, especially since the window buck itself already represents a slight thermal bridge.

 

They never hurried over specific problem areas, arrogantly suggesting they knew better, instead they patiently considered unanticipated consequences, potential long-term issues, and actively questioned my assumptions in a positive way that tried to make the overall quality of the installation better. This mixture of curiosity, intelligence, and craftsmanship was a real pleasure to observe and work with.

 

starting 2nd layer rockwool n side

Mark and Wojtek beginning the second layer of Rockwool on the north side.

 

If a GC built this level of rapport with each subcontractor, I can certainly understand their refusal to work with anyone outside of their core team — it just makes life so much easier, and it makes being on the job site a lot more fun.

 

2nd layer rockwool at utilities

Second layer of Rockwool installed around mechanicals. Note the sill cock, or hose bibb: although it runs into the house, we left it loose so that it could be adjusted until the siding was complete — only then was it permanently soldered into place.

 

 

weaving outside corner w: 2nd layer

Weaving the seams at the outside corners to avoid undermining the thermal performance of the Rockwool.

 

 

2nd layer rockwool fastener at wdw

Close-up of the fasteners we used to attach the second layer of Rockwool.

 

For the second layer of Rockwool, Wojtek and Mark tried to hit only studs with the black Trufast screws. In fact, screwing into the studs with these fasteners, in effect, became a guide for accurately hitting studs with the first layer of strapping.

 

plates for 2nd layer rockwool

 

These Trufast screws and plates worked well and were easy for Wojtek and Mark to install.

 

trufast screw bucket

 

 

inside bucket trufast screws

The Trufast screws and plates were purchased from a local roofing supply house.

 

 

w side 2 layers rockwool

West side of the house with 2 layers of Rockwool complete.

 

 

1st layer rockwool into s side garage

First layer of Rockwool filling the gap between the house and garage framing.

 

If our lot had been larger, we would’ve gone with a completely detached garage, but unfortunately it just wasn’t an option.

 

2nd layer rockwool closing gap at garage

Second layer of Rockwool closing the gap between house and garage completely, ensuring our thermal layer is unbroken around the perimeter of the house.

 

 

nw corner 2 layers rockwool

Northwest corner of the house with the 2 layers of Rockwool installed.

 

It was exciting to see the house finally wrapped in its 4″ of Rockwool insulation.

 

 

Installing Battens and Creating our Rainscreen

Initially we were going to use 2 layers of 1×4 furring strips (also referred to as strapping or battens); the first layer installed vertically, attaching directly over the 2×6 framing members through the 2 layers of Rockwool and the Zip sheathing, with the second layer installed horizontally, anticipating the charred cedar that would be oriented vertically on the house.

Pro Trade Craft has many really informative videos, including this one on using a rainscreen behind siding:

 

 

Nevertheless, as the second layer of Rockwool went up, Wojtek and Mark pointed out that putting the siding in the same plane as the Rockwool/metal flashing on the basement foundation would be needlessly tricky. In other words, maintaining about a 1/8″ horizontal gap between the bottom edge of the vertical siding and the metal flashing on the foundation around the house would be nearly impossible, and any variation might prove unsightly.

As a solution, we decided to use 2×4’s for the first layer of strapping. By adding to the overall thickness of the remaining wall assembly it meant the eventual siding — now pushed slightly out and farther away from the Z-flashing covering the face of the Rockwool on the foundation — could be lowered so that visually it slightly covered what would’ve been a gap between the top of the metal flashing on the foundation insulation and the bottom edge of the siding. Wojtek and Mark also found that the 2×4’s were easier to install than the 1×4 furring strips directly over the Rockwool so that it didn’t overly compress the insulation (an easy thing to do).

Unfortunately, increasing the overall wall thickness with 2×4’s meant having to use longer Fastenmaster Headlok screws (it would also cost us later when it came to the siding on the north side of the house — more on this later). Apart from this change, the additional overall wall thickness mostly just increased the air gap in our rainscreen, which arguably just increased potential air flow while also expanding the drainage plane behind the eventual siding.

 

 

In one of the Hammer and Hand videos Sam Hagerman mentions that at least 1.5″ of screw should be embedded into the framing (excluding the thickness of the sheathing) for this type of wall assembly, but when I asked a Fastenmaster engineer about this directly he recommended a full 2″ of their screws should be embedded into the framing members in order to avoid any significant deflection over time.

As a result, we ended up using 8.5″ Headlok screws. The screws work incredibly well, requiring no pre-drilling, and they’re fun to use with an impact driver (keep your battery charger nearby). Along with the plastic cap nails and Trufast screws, I think we ended up with less than a dozen fasteners that missed the mark for the entire house — a testament to Wojtek and Mark’s skill. I was able to seal around these errant fasteners from the inside with a dab of HF Sealant.

 

headlok missed framing

Sealing around a Headlok screw that missed a 2×6 framing member.

 

During the design stage, using these longer screws prompted concerns regarding deflection, but based on this GBA article, data provided by Fastenmaster, along with some fun on-site testing, the lattice network of strapping (whether all 1×4’s or our mix of 2×4’s and 1×4’s) proved to be incredibly strong, especially when the siding material is going to be relatively light tongue and groove cedar.

For the garage, since insulation wasn’t going to cover three of the walls (only the common wall with the house was treated as part of the house wall assembly), we used significantly shorter Headlok screws for the first layer of furring strips.

 

monkey on furring strips

The Beast testing out the structural integrity of our strapping on the garage. Note the Cor-A-Vent strip below the bottom horizontal furring stip, helping to establish a ventilated rainscreen.

 

 

garage only 2x4s

Common wall inside the garage. Only a single layer of strapping was necessary in preparation for drywall.

 

Mark took the time to recess these screws to make sure they didn’t interfere with the eventual drywall.

 

recess 4 screws

Recessed Headlok screw on a 2×4 in the garage. Ready for drywall.

 

A small detail, but one of many examples showing Wojtek and Mark’s attention to detail, not to mention their ability to properly assess a situation and act appropriately without having to be told what to do.

Once the 2×4’s were all installed vertically through the structural 2×6’s as our first layer of strapping, Wojtek and Mark could install the components of the rainscreen, including the Cor-A-Vent strips at the top and bottom of the walls, as well as above and below windows and doors. In combination with the 2×4’s and the 1×4’s, this system creates a drainage plane for any water that makes its way behind the siding, while also providing a space for significant air flow, speeding up the drying time for the siding when it does get wet.

 

rainscreen2.jpg

Why use a rainscreen? Illustration courtesy of Hammer and Hand.

 

In addition to the Cor-A-Vent strips, we also added window screening at the bottom of the walls just as added insurance against insects. We noticed that on the garage, even without any insulation, the Cor-A-Vent didn’t sit perfectly flat in some areas on the Zip sheathing. Since the Rockwool on the foundation, now covered by the metal flashing, was unlikely to be perfectly level, or otherwise true, along any stretch of wall, it made sense to us to double up our protection in this way against insects getting into the bottom of our walls at this juncture.

 

starting 1x4s n side

1×4’s being installed horizontally on the north side in preparation for the charred cedar that will be installed vertically. Also note the Cor-A-Vent strips just above the foundation and below the window.

 

 

cor-a-vent-product-label

The main product we used to establish our ventilated rainscreen.

 

 

insect screen for rscreen

Window screen we cut to size for added insurance at the bottom of the walls around the Cor-A-Vent strips.

 

Wojtek and Mark also did a nice job of taking their time to shim the 1×4 layer of furring strips, thus ensuring a flat installation of the charred cedar.

 

shims behind 1x4s

Shims behind some of the 1×4 furring strips to ensure a flat plane for the vertical cedar siding.

 

This really paid off, not only making their lives easier when installing the tongue and groove cedar, but also providing aesthetic benefits in the overall look of the siding. This was especially true on the north side of the house, which has the largest area of charred siding with almost no interruptions, apart from a single window. It’s also the tallest part of the house, so without proper shimming the outcome could’ve been really ugly. Instead, once the cedar siding was installed it was impossible to tell there was 4″ of Rockwool and 2 layers of strapping between it and the Zip sheathing.

Really impressive work by Wojtek and Mark.

 

lking down furring behind rscreen at fdn

Looking down behind the ventilated rainscreen — 2×4, 1×4, with Cor-A-Vent and window screen at the bottom, just above the top of the foundation. This gap behind the siding provides ample air flow for the cedar siding, ensuring that the wood never remains wet for long.

 

 

rscreen furring at foundation

Strapping and rainscreen elements around a penetration near the top of the foundation.

 

Things got somewhat complicated around windows and doors, but once we worked through all the details for one window it made the remaining windows and doors relatively straightforward to complete.

Below you can see all the elements coming together: the window itself, the window buck covered with tapes for air and water sealing, the over-insulation for the window frame, the Cor-A-Vent strip to establish air flow below the window and behind the eventual cedar siding, along with the strapping that both establishes the air gap for the rainscreen while also providing a nailing surface for the siding.

Once most of the siding was complete around each window, but before the 1×6 charred cedar pieces used to return the siding to the window frames were installed, each window received a dedicated metal sill pan. The pan slid underneath the bottom edge of the aluminum clad window frame and then extended out just past the edge of the finished siding (I’ll include photos showing this detail in the next blog post about installing the charred cedar siding).

Here’s a JLC article discussing a couple of options for trim details in a thicker wall assembly with similar “innie” or “in-between” windows:

 

Window Trim

 

And here’s a detailed slide presentation by Bronwyn Barry regarding details like these for a Passive House wall assembly:

 

Sills and Thresholds – Installation Details

 

wdw rscreen and frame detail

The many details coming together around a window. In addition, each window eventually received a dedicated metal sill pan as a durable way to ward off water intrusion.

 

 

from int wdw rscreen and sill

Looking through an open window to the sill and the rainscreen gap at the outside edge. Note the Extoseal Encors protecting the sill of our window buck.

 

 

lking down wdw rainscreen

Outside edge of the window sill, looking down into the mesh of the Cor-A-Vent strip with daylight still visible from below.

 

 

rscreen at hd flash on wdw

Head flashing at the top of a window with doubled up Cor-A-Vent strips above it.

 

 

out corner hd flshng ready for sd

Same area, but with a 1×4 nailed across the Cor-A-Vent, creating a nailing surface for the cedar siding.

 

Many of the same details were repeated at the top and bottom of our two doorways. Below is a close up of the kitchen door threshold with Extoseal Encors and Cor-A-Vent again, along with additional metal flashing. Once a dedicated metal sill pan was installed (after most of the siding was installed), it felt like we did everything we could to keep water out.

 

kitch dr prepped 4 sd

Many of the same air and water sealing elements and rainscreen details present around the windows ended up at the top and bottom of doors as well.

 

In the photo below, you can see the many elements we utilized to try and prevent moisture damage around the front porch. For the door buck itself, I applied Prosoco’s Joint and Seam, both at joints in the plywood and the plywood/Zip sheathing connection, but also between the concrete and the door buck, as well as between the Rockwool and the concrete. We also kept the 2×4’s off the concrete, while also using the Cor-A-Vent strips to establish a ventilated rainscreen so that any moisture that does get behind the siding has ample opportunity to dry out in this area before it can cause any rot.

 

frt porch prep - rscreen water

Front porch: elements in place to try and prevent moisture damage.

 

 

west w: 2 layers battens

West facade prepped for siding.

 

 

flashing details on porch

Wojtek and Mark did a nice job with all the metal flashing details around the house — these kind of areas are the unsung heroes of a structure that manages water safely, and unfortunately go largely unnoticed by most homeowners.

 

In the next blog post I’ll go through the details for the top of the ventilated rainscreen when discussing how the charred cedar siding was installed.

 

Mark and Wojteck at front door

Mark and Wojtek installing Cor-A-Vent above the front door.

 

Even without the siding installed yet, it was especially rewarding to see all the underlying prep work involved in finishing our thermal layer and rainscreen come together so nicely.

 

Mark and Wojtek on the roof

Mark and Wojtek on the garage roof finishing up the battens for the front of the house.

 

Many thanks to Wojtek and Mark for executing all these details with such skill!

Blower Door (Air Sealing #9 )

2

When it was time to schedule our blower door test we considered using Eco Achievers, but we only knew about them because they’ve worked extensively on projects for our original builder, Evolutionary Home Builders. We decided the potential awkwardness, or even a possible conflict of interest, wasn’t worth pursuing their services. An example of guilt-by-association I suppose, one that is probably unfounded but, nevertheless, the strong affiliation with our original builder made it difficult for us to reach out to them for help. They also hired one of Brandon’s former employees (this employee was nothing but nice and professional towards us as we were deciding to part ways with Brandon), which would’ve only added another layer of awkwardness to the situation.

Unsure how to proceed, I looked online and found Anthony from Building Energy Experts. He was able to come out and do a blower door test for us, helping me hunt down a couple of small leaks, so that we ended up at 0.34 ACH@50 for this initial test.

Here’s a Hammer and Hand video discussing the use of a blower door:

 

 

On a side note: all of the Hammer and Hand videos, along with their Best Practices Manual, were incredibly helpful as we tried to figure out all the Passive House details related to our build. It’s no exaggeration to say that without Hammer and Hand, the Green Building Advisor website, BSC, and 475 HPBS, our build would’ve been impossible to accomplish on our own. I owe an incredible debt of gratitude to all of these great resources who invest valuable time sharing such a wealth of information.

Below is a Hammer and Hand video noting the importance of properly detailing corners to avoid air leaks:

 

 

Because of this video, I sealed all of my corners for the windows and doors like this:

 

HF Sealant in corners b4 blower door

Adding Pro Clima HF Sealant after completing taping of the corner, just for added insurance against potential air leakage.

 

I also added some HF Sealant to the lower portion of the windows, since some air leakage showed up in this area with Anthony where components of the window itself come together in a seam.

 

sealant on wdw components junction

Seam near bottom of window where components meet — sealed with HF Sealant.

 

Where components come together is often an area that needs special or further attention.

 

close up corner and wdw components seam w: sealant

Close-up of this same area — seam in components sealed, along with the bottom corner of the window and the gap between window buck and window.

 

Even with layers of redundancy in place, in the picture below there was a small air leak still present at the bottom plate – sub flooring connection. A coating of HF Sealant easily blocked it.

Once the stud bays were insulated (after most of the siding was up), the interior walls would eventually be covered with Intello (I’ll cover the details in a future post on interior insulation), adding yet another layer of redundancy for mitigating potential air intrusion.

 

area of kitchen sill plate leakage

Area of kitchen sill plate leakage.

 

Anthony didn’t have any previous experience with a Passive House build, so it occurred to me that it might be beneficial to reach out to Floris from 475 High Performance Building Supply (he had already done our WUFI analysis for us), and Mike Conners from Kenwood Property Development to see if there was someone locally who did. Mike is a Passive House builder in Chicago who had already helped me out with some Rockwool insulation when we came up short earlier in our project (the two GC’s we fired repeatedly struggled with basic math), and he was very nice to take the time to answer some other technical questions for me as well.

 

 

Both, as it turned out, ended up recommending that I contact Steve Marchese from the Association for Energy Affordability.

 

 

Steve would eventually make three trips to the house, doing an initial blower door test after the structure was weather-tight and all the necessary penetrations had been made through our air barrier, a second test after exterior continuous insulation was installed, and a final test after drywall was up to ensure there hadn’t been any increase in air leakage during the final stages of construction.

 

Steve starting blower door test

Steve setting up the blower door for his first test.

 

Following Passive House principles for our build, we also followed the same protocols for the blower door tests: Blower Door Protocol

With the structure under pressure from the blower door fan, Steve and I walked around the house while he used a small smoke machine in order to try and find any leaks that I could then seal up.

 

Steve testing window gasket

Steve starting at the windows. Here testing a window gasket for air leakage.

 

The gaskets around our windows and doors proved to be some of the weakest areas in the house although, comparatively speaking, it was inconsequential since the overall air tightness of the structure was fairly robust (favorite word of architects).

 

Steve showing impact of unlocked window

Steve showing me the impact a window in the unlocked position can have on air tightness. The gasket, ordinarily squeezed in the locked position, works to bring the sash and the frame tightly together.

 

 

Steve smoke at family rm wdw

Looking for areas around the windows that might need adjusting or additional air sealing.

 

For instance, even though no substantial air leakage showed up around this kitchen door, during our first winter this same door eventually had ice form outside at the upper corner by the hinges, on the exposed surface of the gasket where the door meets the frame.

 

Steve at kitchen door

 

After figuring out how to adjust the door hinges, there was no longer any ice showing up this winter, not even during our Polar Vortex event in late January.

 

 

Much the same thing occurred around our front door as well, with the same solution — adjusting the hinges to get a tighter fit at the gasket between the door and the frame.

 

Steve testing attic hatch

Steve testing the attic hatch for air leaks.

 

Steve was nice enough to go around and methodically check all the penetrations in the structure.

 

Steve testing plumbing vent in kitchen

Steve testing for air leaks around the kitchen plumbing vent and some conduit.

 

 

Steve testing for air leaks @ radon stack

Steve testing for air leaks around the radon stack.

 

 

Steve @ radon stack close up

Close up of radon stack during smoke test.

 

There was one area in the guest bathroom where the Intello ended up getting slightly wrinkled in a corner during installation. With Tescon Vana and some HF Sealant I was able to address it so nothing, thankfully, showed up during the smoke test.

 

Steve testing wrinkled area of Intello

Steve testing area of Intello that I inadvertently wrinkled during its installation.

 

After looking around on the main floor, Steve moved down into the basement.

 

Steve testing for air leaks @ main panel

Checking for leaks at the main electrical panel.

 

 

Steve testing for air leaks @ main panel exit point

Checking for leaks at the conduit as it exits the structure.

 

 

Steve testing for air leak @ sump pit cap

Looking for air leakage around the sump pit lid.

 

The lids for the sump pit and the ejector pit were eventually sealed with duct seal putty and some Prosoco Air Dam.

 

Steve testing for air leaks @ ejector pit

Testing the ejector pit for air movement.

 

 

Steve testing for air leaks @ Zehnder exit point

Checking for air leakage around one of the Zehnder ComfoPipes as it exits the structure.

 

 

Steve testing for air leaks @ pvc:refrigerant lines

Looking for air leaks around the heat pump refrigerant lines as they exit the structure.

 

 

Steve smoke at sump discharge

Checking around the penetration for our sump pump discharge to the outside.

 

Before the second blower door test, I was able to add some duct seal putty to the lids of the sump and ejector pits.

 

ejector pump lid w: duct seal

Ejector pit lid with some duct seal putty.

 

Below is a copy of Steve’s blower door test results, showing the information you can expect to receive with such a report:

 

Final Blower Door Test Results

 

For the last two tests Steve used a smaller duct blaster fan in order to try and get a more precise reading for air leakage.

 

Steve at front door

With Steve just after the initial blower door test was complete.

 

Steve would be back two more times — once before drywall, and once after drywall — just to ensure we had no loss of air tightness develop in the interim stages of the build (especially after continuous exterior insulation with furring strips were installed).

Here are the final figures noting where we ended up:

 

0.20 ACH@50 and 106 cfm@50

 

We are well below Passive House requirements (both PHI and PHIUS), so there was a great sense of relief knowing that all the time and effort put into air sealing had paid off, giving us the tight shell we were looking for. Even so, it was still pretty exciting news, especially for a first build.

And here’s an interesting article by 475 HPBS regarding the debate over how air tightness is calculated for PHI vs. PHIUS projects, and the potential ramifications:

 

Not Airtight