kimchi & kraut

Passive House + Net Zero Energy + Permaculture Yard

Tag Archives: midwest passive house

Foundation Details (Air Sealing #1)

14

Footings

For the top of the footings we used a product from Cosella Dörken called Delta Footing Barrier. Acting as a capillary break, the membrane is supposed to help prevent moisture from wicking up from below the footing, where it could then migrate into the foundation wall and into the basement, or even the wall assembly above (worst case scenario), causing mold or other moisture related damage. It should contribute to making the basement a very livable space (especially when combined with significant amounts of insulation on the exterior walls and under the slab).

Here’s a detail from the construction drawings:

footing-thermal-bridge-up-from-soil
Red arrow shows thermal bridge and gap in the vapor barrier up through the footing from surrounding soil if Delta membrane were not present.

In other words, this junction represents a weak point in our thermal envelope and vapor barrier. Passive House proponents often talk about using a red pen on a construction drawing to follow the air barrier and thermal envelope (the goal: no gaps in air sealing or the layers of insulation) . In theory, you should be able to do this all the way around the structure without once lifting your pen. If you can lift your pen (meaning there’s a gap in your air barrier or thermal envelope — which would be the case without the Delta membrane on top of our footing), then it’s a weak point that should be addressed (if at all possible).

Even with significant insulation on the exterior wall of the foundation (Roxul Comfortboard 80: 2″ + 3″), along with a sprayed-on waterproofing membrane, as well as a vapor barrier (Stego Wrap) and insulation (Roxul Comfortboard 80: 2″ + 2″) under the basement slab, this junction where the three elements meet — slab, footing, wall — is a weak point. Although it doesn’t address the weakness in R-value, at least it should keep the moisture at bay (probably the biggest complaint associated with basements).

With a 9′ basement, we’re hoping the temperatures at this depth are consistently mild enough to avoid any kind of significant energy penalty. I’m confident this will be the case because in our last home, a typical suburban tract house without much insulation, the basement always stayed cool in the summer and warm in the winter, even though the ducts to the basement had been closed off so the space never saw any direct benefit from the HVAC system.

For minimal cost in materials, the Delta membrane seems well worth it for the added peace of mind.

foundation-delta-membrane-in-box
Rolls of Delta Footing Barrier on site and ready to go.

Here is a video and some photos from our job site:

The guys from Tynis Concrete didn’t seem to mind trying something new, and the membrane went on without any issues.

foundation-delta-fabric-close-up-in-corner
A corner of the footing with the Delta membrane “keyed” into the footing.

I couldn’t find any local suppliers who carried the Delta membrane, so I ordered online from: spycorbuilding.com

foundation-mud-shot
Detail of the bottom of our hole, being prepped for the footings.

Foundation Walls with Roxul Comfortboard 80

For the walls, first we used a spray-on waterproofing membrane from Tremco:

After the waterproofing was complete, we began installing the two layers of Roxul Comfortboard 80 (a dense, rigid form of insulation that can be used below grade, to the exterior side of wall sheathing, and even under a basement slab), which will give the basement foundation walls an R-20 of insulation value.

roxul-delivered-to-the-site
Roxul delivery shows up on site (Comfortboard 80: 2″ and 3″ thick). Roxul is showing up in the Big Box stores here in the Chicago area, so it’s becoming easier to order.

When questions came up about how to install Roxul, or which product to use where, their technical help via email was great — in our case, Fiona Schofield, who gave us a lot of useful information — including the document below, a study on the long-term condition of Roxul (aka stone, rock, or mineral wool) in a below grade application (i.e. up against an exterior foundation wall):

external-thermal-and-moisture-insulation-of-outer-basement-wall (pdf)

In addition, after finding the video below online, in which what looks to be a European version of Roxul is attached to a cinder block wall with an adhesive, or a thinset mortar,

I contacted Fiona and heard back that it was ok to use an adhesive for our first layer (PL Premium, or similar polyurethane adhesive caulk), so long as we used a mechanical fastener for the second layer. In effect, the first layer just needs to stay on long enough for us to get the second layer up and attached with a mechanical fastener. This really saved us some time since the guys didn’t have to drill two full sets of holes.

sammy-butters-the-back-of-the-roxul
Sammy hitting the back of the Roxul with Liquid Nails before setting it into position. The adhesive worked really well at keeping the Roxul in place, even when the foundation was damp in certain areas.

The guys also didn’t seem to mind cutting or otherwise working with the Roxul. We used serrated knives we purchased from Home Depot, made especially for cutting rock wool…

serrated-knife-for-roxul
This knife, purchased from Home Depot, works really well cutting the Roxul.

…which worked fine, but then after some experimenting, the guys also began using a small, handheld sawzall (reciprocating saw), and even a table saw, to get the exact-sized pieces we needed to ensure staggered seams. I had my doubts about the table saw, but Phil said the Roxul cut easily, and it really didn’t seem to kick up a lot of dust (although he did wear a dust mask for protection).

nils-and-bill-getting-1st-layer-of-roxul-up
Billy and Nils (in the hole in the background) gluing up the first layer of Roxul.

Once the first layer of Roxul (2″ thick) was in place, we could then install our second layer of Roxul (3″ thick) over the top of it.

After a lot of research, and even posting a question on Green Building Advisor…

Attaching Roxul Comfortboard 80 to Exterior of Foundation Walls

…we decided to go with the Rodenhouse fastener (Plasti-Grip PMF):

These really are as easy to install as depicted in the video. Using a hammer drill with a 5/16″ bit, the guys drilled a hole to the depth of the fastener, before tapping the PMF fastener home with a hammer. It’s a genuinely straightforward process. Sometimes a fastener wouldn’t sit perfectly, but as long as a majority of the fasteners on each board did, it didn’t seem to be a problem. Based on what I read online, they were much easier to work with than if we had to use Tapcon or similar concrete screws.

rodenhouse-fastener-close-up
Close-up of the Rodenhouse PMF fastener.

They weren’t cheap, but they were well worth the cost in materials for the savings in labor (and frustration). And Mitch Mahler, from Rodenhouse, was easy to work with via email in terms of ordering or getting answers to technical questions.

rodenhouse-fastener-box-w-label
The box the fasteners came in.
in-the-trenches-w-roxul
In the trenches, as the second layer of Roxul gets attached with the Rodenhouse fasteners.
long-narrow-piece-of-roxul-w-3-fasteners
Long, narrow piece of Roxul with 3 Rodenhouse fasteners.

Normally, Roxul recommends 5 fasteners per piece (4 in the corners, 1 in the middle), but we found that 4 on a normal piece, and 3 for a long, narrow piece worked fine — at least for the foundation, where the backfill will help to keep the Roxul in place over the long haul.

Thermal Bridging in the Foundation

Following Passive House science principles, we tried to remove as many points of thermal bridging in the structure as we could. One area where this was addressed in the construction drawings was a 7″ thermal break between the basement foundation and the attached garage foundation. In other words, there would be no physical connection between the garage and house foundations at all. The only connection would occur above, at the level of framing, where they would be tied structurally together. The idea was that we could place our two layers of Roxul (2″ + 3″) in that gap, thus maintaining our 5″ of Roxul on the exterior of the foundation, uninterrupted (the key point here) around the perimeter of the basement foundation.

On the day the footings were installed, however, our concrete subcontractor expressed serious reservations about the long-term structural stability of the framed house and garage above this gap — in effect, he was worried that over time the two foundations might settle and move apart, wreaking havoc with the framed structures above.

So I was back to post another question on Green Building Advisor (a fantastic resource for any green build or self-build) on the topic:

How important is a thermal break between a house foundation and an attached garage foundation?

Here are some photos showing these connections:

foundation-north-corner-garagehouse-connection
Garage foundation meeting up with corner of house foundation (north side of house).
foundation-garage-house-connection-north-corner
Close-up of this garage-house foundation connection, from inside the garage.
foundation-front-porch-garage-to-house-porch-to-house-connections
Front porch. Thermal bridge from garage to house is off to the far right.
foundation-garage-house-connection-inside-corner-of-garage-inside-corner-of-front-porch
Inside corner of garage where garage-front porch-house connect.
foundation-front-porch-to-house-connection-outside-corner-of-porch
Outside corner of front porch. Technically, another thermal bridge from porch to house foundation.
foundation-side-porch
Wing wall for side porch stoop. Yet another thermal bridge to the house foundation.

Unfortunately, there just doesn’t seem to be a lot of information available as to how to proceed. In the end, we decided to ignore these connections, hoping that the thermal bridging at these two points (garage-house, garage-front porch-house), in particular, won’t be all that significant (to our heating and AC costs, or, for example, cold getting into the foundation and then rising up and getting into the wall assembly above these two points where it could become interstitial condensation — unwanted, and potentially dangerous, moisture in the wall).

I assumed Passive House builders would incorporate rigid foam insulation into the concrete forms at these points, but I couldn’t find any pictures or descriptions showing or talking about this in books, magazines, or anywhere online. Either Passive House builders ignore these kind of connections, or I just missed the information somehow. 

*** If anyone knows of good sources on this, let me know, and I will post links here to help others in the design stage of their own build ***

Update: David Goodyear is building a Passive House in Newfoundland, and he has successfully used rigid foam between the house and garage foundations. You can read about it on his blog here:

Flat Rock Passive House: A Tale of Two Foundations
foundation-side-porch
BEFORE: Monument to Italian Brutalism.
side-porch-getting-wrapped-in-roxul
AFTER: Wrapped in snuggly blanket of Roxul. The wing wall was eventually entirely covered except for the tops.

Below are the other points of thermal bridging in the foundations, now covered in Roxul:

south-inside-corner-of-garage-w-roxul
Corner of garage foundation meeting up with house foundation (standing inside garage).
south-view-of-garage-house-foundation-connection-w-roxul
Same corner, from outside, looking at house foundation to the right.
inside-garage-garagehouse-connection-w-roxul
Garage-front porch-house connection (from inside garage).
front-porch-w-roxul
Outside corner of front porch meeting up with house foundation.

We did our best to cover these thermal bridges, but clearly it’s imperfect, so all we can do is hope there won’t be a significant energy penalty associated with these connections.

Basement Windows and Roxul

As the Roxul was going on the foundation, Phil and Nils installed window bucks for the two basement windows. The bucks were sized so they meet up flush with the two layers of Roxul. Eventually a layer of HardieBacker board and two coats of Tuff II (the product we’ll be using for the parge coat) will cover the window bucks, and also the transition between the top of the foundation walls and grade around the perimeter of the house.

nils-installing-basement-window-bucks
Nils installing the basement window bucks as the Roxul is being installed on the exterior side of the foundation.

I initially intended to use the R-Guard line of liquid membranes by Prosoco for air sealing and waterproofing all seams and window/door openings, but cold temperatures made this impossible (they require 40° F and rising, which would be the exception rather than the rule here in Chicago for December and January). Maybe because of years house painting (caulking and drywall patching) the liquid membranes seem easier to use and less fussy to get right (the big issue with the tapes is avoiding wrinkles and properly shingle flashing to get water moving in the right direction).

Our Plan B was the series of Pro Clima products sold by 475 High Performance Building Supply. Most of them, including the sealant, can be used down to 14° F without issues.

Another option would’ve been the line of Siga tapes, another popular choice used in Europe, available from Small Planet Supply.

So as the window bucks went in, I followed, applying Contega HF sealant to all the seams and gaps. The sealant is acting as our first layer of air blockage. It’s super sticky, so I don’t doubt that it’s permanently flexible. I did a mock-up of our wall assembly months ago, and the HF on the seams is still tacky to the touch. It goes on light green, then slightly darkens as it dries.

contega-hf-sealant-in-20-oz-sausage
Contega HF sealant in a 20 oz. sausage. It’s also available in the more familiar 10 oz. caulk tubes.

A few suggestions for using the HF Sealant:

  • I’ve found that completely snipping off the metal clip on the end of the sausage (as opposed to just cutting a couple of small slits around it) prevents it from getting jammed in the front end of the gun.
  • If I have a half-finished sausage of HF at the end of the day, I put it in a tightly wrapped plastic bag overnight (see photo below), which allows me to use it within a day or two without any problems.
  • Use a tiny spatula (see photo below) to tool the HF into place rather than your finger, as you normally would with a caulk — it’s just too sticky.
  • Because the HF is so sticky, I wear Nitrile gloves, so when it starts to get everywhere — and it will get everywhere if you let it — I just simply change to a new pair.
  • For clean up, the Citrus Solvent we’ve been using with the tung oil works great.
newborn-sausage-gun
The Newborn brand of sausage gun we’re using for the HF sealant. Found it on Amazon. A really well-made tool.
ateco-spatula
Found this on Amazon. I thought it was construction grade, but it’s made for kitchen use. It’s durable, and I like the thin blade since it offers more “feel” than a thicker blade, making it easier to tool the HF into place without displacing too much of it in the process.

It’s easy to forget the realities of a construction site when planning details, like the use of the Pro Clima tapes. I pictured it being a pretty straightforward process, not a winter day in the 20’s, fingers numb, propped up on an unbalanced ladder in the hole, while the other guys are cutting wood and Roxul around me — a case of adapt or die, I guess, and a reminder not to be overconfident about the products you’ll be using, or the installation process that inevitably goes with them.

installing-pro-clima-tapes-on-ext-side-of-base-wdw-bucks
Applying the Pro Clima tapes to the exterior side of the window bucks.

It was important that the connection between the window bucks and the concrete of the foundation be air sealed and made water tight before it gets completely covered by the two layers of Roxul.

It’s been in the 20’s and 30’s, so the HF sealant took a couple of days to firm up before I could then apply the series of Pro Clima tapes. I’m using a combination of tapes, including the Tescon Vana (the bright blue), Profil (light blue — great for making inside and outside corners), Contega Solido Exo (black, 6″ wide), and the Extoseal Encors for our sills (475 HPBS has a great series of videos showing how to use each tape).

installing-pro-clima-tapes-on-basement-window
Finishing off the buck from inside the basement.

We knew the bucks would be sitting for some time, exposed to the elements, before the windows actually show up, so we decided to completely cover the openings just to be safe. This gave me extra practice using the tapes, which definitely helped, and it meant not stressing out every time the forecast called for rain or snow.

basement-window-buck-covered-in-tape
Basement window buck covered in Contega HF sealant and Pro Clima tapes.

The only tape that’s giving me fits is the black Contega Solido Exo. It’s thinner than the other tapes, so it has a propensity to want to stick to itself (wrinkles are more difficult to avoid), and I find it much harder to pull it away from its peel-and-stick backing than the other tapes. I worried that the Extoseal Encors might be difficult to get right, but it — along with the Tescon Vana and Profil tapes — has been surprisingly easy to work with.

This video was my Bible for installing the Extoseal Encors:

In lieu of on-site training from someone who’s used a specific product consistently, videos like this one are invaluable when using new products and you want to get the details right. Without videos like this, you’d be in for a frustrating process of trial and error.

For instance, even with this excellent video, I noticed when I did our mock wall assembly that because the Extoseal Encors can stretch around corners it’s easy to stretch it too much, thereby inadvertently thinning it out. I’ve found that when I get to a corner it’s better to just fold it around the edge rather quickly, without overthinking it too much, which helps to maintain the thickness of the material at and around the corners (arguably the product’s strongest attribute in helping to avoid water damage).

I can’t recommend enough doing a mock wall assembly, or practicing on scraps, to get a feel for using these products, before you find yourself on-site doing it for real.

basement-window-buck-before-roxul
Basement window buck sealed and taped on the exterior side before being covered in Roxul.
close-up-basement-wdw-buck-covered-by-roxul
Basement window buck surrounded by two layers of Roxul.
basement-window-buck-and-roxul-meet-up
Close-up of outside edge of basement window buck and Roxul connection.

We’re almost ready to climb out of the hole. It will be exciting to watch the guys start framing so we can see the basic form of the house begin to take shape.

foundation-tools-ready-to-leave-site
Tools ready to head to the next job site. Concrete guys (they’re mostly guys) are the unsung heroes of construction (excavators should be included as well) — like offensive linemen in football, no one pays much attention to them until a mistake is made.
foundation-concrete-jewelry
Concrete jewelry.
queen-of-dirt-mountain
Queen of Dirt Mountain.

Wall Assembly

2

Or: Dude, what’s in your walls?

When choosing what to put in our walls, we knew we wanted to try and balance high R-values (well above the current building code) with a limited environmental impact.

Here are three articles that address the issue:

Best Wall Choices
Without Foam
Twinkies

After evaluating various materials, including sheep wool,

goodshepherdwool.com

blackmountaininsulationusa.com

we decided to use many of the following elements employed by Hammer & Hand:

madrona-wall-assembly-914x1024-e1459377577722
Hammer & Hand wall assembly for their ‘Madrona House’.

In terms of materials, there are any number of options for putting a wall assembly together. For instance, we really wanted to use the sheep wool, but cost and worries (unfounded or not) about availability, led us eventually to Roxul (the Hammer & Hand videos below proved especially helpful in this regard).

After seeing the wall assemblies Hammer & Hand has been using, and how they’ve evolved over time, we felt the Madrona House set-up represented a good balance between cost-environmental impact-availability-ease of installation. We will also be following their lead by using the Prosoco R-Guard series of products to help with air-sealing our building envelope.

Nevertheless, we did make a couple of changes to the Madrona House set-up. For example, we’re using 4″ of Roxul Comfortboard 80 on the exterior side of the Zip sheathing (based on our colder climate zone), and we will be using Roxul R23 batts in the stud bays, along with the Intello vapor retarder, stapled and taped to cover the stud bays. Otherwise, we will be sticking pretty close to the Hammer & Hand Madrona House wall assembly.

So from drywall to exterior siding (interior – exterior), this will be our wall assembly:

  • 5/8″ Drywall
  • Intello Plus vapor retarder (475 High Performance Building Supply)
  • Roxul R23 Batts in 2×6 stud bays (24″ o.c.) (roxul.com)
  • Zip board (for structural sheathing and WRB; seams covered w/ Joint and Seam Filler)
  • 4″ of Roxul Comfortboard 80 (two layers: 2″ + 2″)
  • 2-Layers of 1×4 furring strips (aka battens or strapping) as a nailing base for the cedar siding
  • 1×6 T&G Cedar (charred and oiled with a few boards left natural as an accent — most of it oriented vertically, hence the need for a second layer of furring strips).
wall-assembly-color-coded
A crude rendering of our wall assembly using my daughter’s colored pencils.

A collection of helpful videos explaining the various elements we’re going to use, and why they’re effective:

Without the information available from sources like Building Science Corporation (they have a lot of interesting research documents) and design-builders like Hammer & Hand (not to mention Green Building Advisor and similar sites and forums that allow consumers to Q&A with expert builders and designers in “green” architecture), trying to build structures to such exacting standards (e.g. Passive House – Pretty Good House – Net Zero) would be exceedingly difficult, if not impossible, for those without previous, direct experience in this type of building program. I can’t express how thankful I am that so many individuals and businesses like these are willing to share their years of experience and knowledge with newbies like myself.

Here are the Hammer & Hand videos that initially sparked my interest in using Roxul rather than foam:

Instead of using tape for exterior seams, we are going to use the R-Guard series of products from Prosoco:

For various interior seams and connections we anticipate using the Tescon Vana tape, or an appropriate gunned sealant.

GBA (Green Building Advisor): Building Green (Starter Q&A)

GBA: Article on minimum thickness of exterior foam by climate zone

GBA Question: Foam vs. Roxul

GBA: 10 Rules of Roof Design

GBA: “Greenest”

GBA: Passive House Design (5-part video series) Requires membership after Part I, but well worth it.

BSC (Building Science Corporation): Perfect Wall (pdf)

BSC: Hygrothermal Analysis of Exterior Rockwool Insulation (pdf)

BSC: Moisture Management for High R-Value Walls (pdf)

BSC: Cladding Attachment Over Thick Exterior Insulating Sheathing (pdf)

GBA: Mineral Wool Over Exterior Sheathing

Passivhaus Trust (UK): how-to-build-a-passivhaus-rules-of-thumb (pdf)

Also worth considering:

GBA: The Pretty Good House

GBA: Passive House Certification: Looking Under the Hood

“How did I get here?…”

0

So Why Build an Eco-friendly “Green” Home Anyway?

In the summer my wife and I teach a class together, called Excel 2, which is one small component of a larger, overall Excel Program (my wife is a high school Social Studies teacher).

Typically, Excel students come from first-generation immigrant families. They are college-bound students who have exhibited great potential, but who are in need of some encouragement, particularly in regards to taking Advanced Placement (AP) courses (huffington post). For most of our students, they will be the first ones in their family to attend college, so it is understandably an intimidating prospect in any number of ways.

The course itself is three weeks in the summer session, its focus on developing reading and writing skills by utilizing non-fiction reading assignments. We emphasize the importance of correct spelling, proper grammar usage, and attention to detail by requiring multiple revisions to several thesis paragraphs, which are themselves based mostly on college-level reading assignments.

You can imagine how well this goes over with incoming high school sophomores and juniors — especially in summer. We’ve tried to overcome this dilemma (how to motivate young high school students to tackle a course based on rigor when many of their friends are out enjoying summer break) by delving into topics they are intimately familiar with, but hopefully in ways they have not yet confronted.

IMG_9702
Some of our Excel students with my wife, Anita: (front row) Aubrey and Imani, (back row) Eduardo, Anita, Cecelia, and Karen. 

As a whole, 50% of the students attending Palatine High School qualify for free and reduced lunch. Not surprisingly, then, the Excel students face some unique, if not daunting challenges, both in and out of the classroom. In addition to the normal stresses associated with being a teenager, many of them deal with balancing school work with long work hours at low-paying jobs (helping their families make ends meet), social pressures to stray down the wrong path (in any number of ways), and even (most heart-breaking of all) confronting what researchers term being food insecure — in plain English, not always knowing when or where they will get their next meal.

We present the class to the students as an opportunity to test themselves, to really see where they are, currently, in terms of a whole host of skills. The main goal of the Excel 2 program, therefore, is to really challenge their abilities, not just in terms of reading and writing skills, but also soft skills such as interpersonal communication, the importance of body language, time management, and self-discipline.

Essentially, we try to give them a college-level course experience, hoping it better prepares them for the eventual reality. In other words, we’d rather they struggle in high school with us than have it happen when away from home for the first time, off on their own, at college  (atlantic)  (newsweek)  (washington post).

Here’s an example of our ever-changing syllabus:  Excel 2 – 2015

As you can see from the reading assignments, we encourage our students to start asking questions about everyday things they may be taking for granted. We hope this sharpens critical thinking skills, but we also hope it encourages them to be more active participants in their lives, rather than just sleepwalking through their days as passive consumers.

Consequently, when it came time for us to find a new place to live, we saw it as a good opportunity to practice what we preach:

  • What exactly do you want from a new house?
  • If you’re going to buy a house (and you’re lucky enough to even contemplate doing so), what should it look like? A condo? A townhouse? Or a single-family residence?
  • In which neighborhood are you going to buy?
  • How many square feet do you want (or need)? How many bedrooms? Do you want (or need) a formal living room or dining room? Do you want (or need) a basement?
  • What architectural style appeals to you?
  • How are you going to furnish the interior?
  • Should you care about indoor air quality (IAQ)? And if you do, how do you protect it or improve it?
  • What do you want in your walls and attic for insulation? How much do you need?
  • How much will utilities cost? Are there cost-effective ways to reduce those costs?
  • Are renewables — solar, wind, or geothermal — worth considering? How long is the payback period?
  • Do you want your house to be environmentally friendly — and what does that mean anyway?

Instead of moving into the typical, leaky, not very environmentally friendly suburban condo, townhome, or house (we were leaving behind the latter), we thought it would be more interesting to see just how “green” we could make our next house.

Because we wanted a yard to do plenty of landscaping and gardening, we narrowed the choices down to a single-family house. And, instead of tackling the challenges that come with a retrofit, we decided to try building new.

Much like hearing Jonathan Ive talk about an Apple keyboard, we appreciated the detail required to meet the certified Passive House standard. At the time (summer 2014), this seemed like the way to go.

After the experience we had with our original builder (2015), and then subsequently trying to learn as much as possible about the Passive House standard, in addition to discovering the Pretty Good House concept along the way, our house plans have evolved into a kind of 3-headed hybrid: Passive House science + Pretty Good House + Net Zero (Zero Net Energy: ZNE).

The goal of all three: dramatically reduce the energy consumption of our house as much as possible (especially our dependence on the energy grid). We also want to do a significant amount of planting and growing in our yard, mostly xeric plants that require little additional watering, in order to combine house and yard into an eco-friendly system of sorts.

Our last home (approx. 2800 sq. ft.) was a fairly typical suburban tract house. It had builder-grade windows and doors (most of which had to be replaced after just a few years), very little insulation in the walls (the switch for the back porch light would actually ice up when temperatures fell below 20° F), and it had a great deal of under-utilized space (e.g. a two-story foyer, a formal living room and dining room, and a fourth bedroom, all of which saw little use).

With our new home (just over 1500 sq. ft. of living space), we’re trying to turn all of this on its head so we end up with something we really want and will enjoy. To paraphrase Kevin McCloud: ‘maybe it’s better to have a little bit of something special than a lot of something mediocre’.

An oft-quoted statistic (1)­ suggests a significant amount of our greenhouse gas emissions can be attributed to our structures (typically the figure is in the 40-50% range) — including residential, commercial, industrial, and governmental — so maybe change really does begin at home (SA) (greenbelt movement).

(1) According to a recent Fine Homebuilding article, “Better Than Average”, by Brian Pontolilo: “It’s not clear how much our homes contribute to greenhouse-gas emissions and to climate change. The most recent data available from the Department of Energy is from 2009-2010. Outdated as it is, this data indicates that residential buildings contribute around 20% of total U.S. greenhouse-gas emissions. This includes fossil fuels used on-site (e.g. natural gas for cooking and heating) as well as electricity.” (September, 2016 issue, p. 64)

The title of this blog entry was lifted from a lyric in this Talking Heads song: